Around the world—from tundra to tropical forests, and a variety of ecosystems in between—environmental researchers have set up micrometeorological towers to monitor carbon, water, and energy fluxes, which are measurements of how carbon dioxide (CO2), water vapor and energy (heat) circulate between the soil, plants and atmosphere. Most of these sites have been continuously collecting data, some for nearly 25 years, monitoring ecosystem-level changes through periods of extreme droughts and rising global temperatures. Each of these sites contributes to a regional network—i.e. the European Network (Euroflux) or the Americas Network (AmeriFlux)—and the regional networks together comprise a global network called FLUXNET.

This map shows all of the tower sites around the world that contributed observations to the FLUXNET 2015 data release. Credit: http://fluxnet.fluxdata.org/

This map shows all of the tower sites around the world that contributed observations to the FLUXNET 2015 data release. Credit: http://fluxnet.fluxdata.org/

Recognizing that a plethora of scientific insights could be gleaned from this information, over 450 sites worldwide are sharing their observation data with the FLUXNET database. The project’s most recent data release—FLUXNET2015—includes some of the longest continuous records of ecosystem data ever taken. The information has undergone extensive quality checks and controls (QA/QC) and is now publicly available online.

Computer scientists at the Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab) contributed to the development of the FLUXNET database and website, as well as the software tools that automatically perform QA/QC and fill gaps in field observations. They also helped build tools that allow researchers to easily upload, download and share datasets, as well as track how and where each site’s data will be used. Much of this work was done in collaboration with colleagues at the Max Planck Institute of Biogeochemistry and the Universities of California-Berkeley (UC Berkeley), Virginia (UVA) and Tuscia, Italy.

The AmeriFlux Management Project, which is funded by the DOE and led by Berkeley Lab, the European Ecosystems Fluxes Database and FLUXNET project, worked with several regional networks to process and harmonize all of the information in the FLUXNET2015 release.

This diagram of the fast carbon cycle shows the movement of carbon between land, atmosphere, and oceans. Yellow numbers are natural fluxes, and red are human contributions in gigatons of carbon per year. White numbers indicate stored carbon. Credit: NASA http://earthobservatory.nasa.gov/Features/CarbonCycle/

This diagram of the fast carbon cycle shows the movement of carbon between land, atmosphere, and oceans. Yellow numbers are natural fluxes, and red are human contributions in gigatons of carbon per year. White numbers indicate stored carbon. Credit: NASA http://earthobservatory.nasa.gov/Features/CarbonCycle/

According to Dennis Baldocchi, UC Berkeley Professor and FLUXNET Principal Investigator, this data is allowing researchers to ask questions about long-term trends in climate and ecosystem health that would have previously been impossible to investigate. The data could also be used to help a variety of people, from meteorologists to farmers, make better-informed decisions.

“We know that the concentration of CO2 changes in an ecosystem over time, and now we can look at how these changes affect the photosynthesis or water usage of an entire forest or desert,” he says. “We can also look at the affects of extreme weather events—like hot and cold spells—on an ecosystem.”

To read the rest of the story, go here.