News Center

Hide & Seek: Sterile Neutrinos Remain Elusive

Daya-Bay-first-icon

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called sterile neutrino, a possible new type of neutrino beyond the three known neutrino “flavors,” or types.

Competition for Graphene

Illustration of a MoS2/WS2  heterostructure with a MoS2 monolayer lying on top of a WS2 monolayer. Electrons and holes created by light are shown to separate into different layers. (Image courtesy of Feng Wang group)

Berkeley Lab reports the first experimental observation of ultrafast charge transfer in photo-excited MX2 materials, the graphene-like two-dimensional semiconductors. Charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

Shaping the Future of Nanocrystals

Haimei-thmb-optimized

Berkeley Lab researchers have recorded the first direct observations of how facets form and develop on platinum nanocubes in solution, pointing the way towards more sophisticated and effective nanocrystal design and revealing that a nearly 150 year-old scientific law describing crystal growth breaks down at the nanoscale.

How Sweet It Is: New Tool for Characterizing Plant Sugar Transporters Developed at Joint BioEnergy Institute

A family of six nucleotide sugar transporters never before  described have been characterized in Arabidopsis, a model plant for research in advanced biofuels. (Photo by Roy Kaltschmidt)

JBEI researchers have developed a powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy – an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters, critical components in the biosynthesis of plant cell walls.

Not Much Force: Berkeley Researchers Detect Smallest Force Ever Measured

Mechanical oscillators translate an applied force into measureable mechanical motion. The Standard Quantum Limit is imposed by the Heisenberg uncertainty principle, in which the measurement itself perturbs the motion of the oscillator, a phenomenon known as “quantum back-action.” (Image by Kevin Gutowski)

Berkeley Lab researchers have detected the smallest force ever measured – approximately 42 yoctonewtons – using a unique optical trapping system that provides ultracold atoms. A yoctonewton is one septillionth of a newton.

New Details on Microtubules and How the Anti-Cancer Drug Taxol Works

The most detailed look ever at the assembly and disassembly of microtubules, tiny fibers of tubulin protein that play a crucial role in cell division, provides new insight into the success of the anti-cancer drug Taxol.

Berkeley Lab researchers have produced images of microtubule assembly and disassembly at the unprecedented resolution of 5 angstroms, providing new insight into the success of the anti-cancer drug Taxol and pointing the way to possible improvements.

Confirmed: Stellar Behemoth Self-Destructs in a Type IIb Supernova

The Palomar 48 inch telescope. (Photo by: Iair Arcavi, Weizmann Instiute of Science)

Wolf-Rayet stars, more than 20 times as massive as the Sun and at least five times as hot, are relatively rare and often obscured. Scientists don’t know much about how they form, live and die.

Berkeley Lab Develops Nanoscope to Probe Chemistry on the Molecular Scale

wwwww

By combining atomic force microscopy with infrared synchrotron light, researchers from Berkeley Lab’s Advanced Light Source and the University of Colorado have improved the spatial resolution of infrared spectroscopy by orders of magnitude, while simultaneously covering its full spectroscopic range, enabling the investigation of variety of nanoscale, mesoscale, and surface phenomena that were previously difficult to study.

No Ocean-Borne Radiation from Fukushima Detected on West Coast Shoreline, According to Analysis of 1st Samples from ‘Kelp Watch 2014’

DSC_73092-300x200

Scientists working together on Kelp Watch 2014 announced today that the West Coast shoreline shows no signs of ocean-borne radiation from Japan’s Fukushima nuclear power plant disaster, following their analysis of the first collection of kelp samples along the western U.S. coastline. The team is co-led by Berkeley Lab and UC Berkeley’s Kai Vetter.

Berkeley Lab Climate Scientist: More Extreme Heat and Drought in Coming Decades

NCA-precipitationthumb

By the end of this century climate change will result in more frequent and more extreme heat, more drought, and fewer extremes in cold weather in the United States. Average high temperatures could climb as much as 10 or more degrees Fahrenheit in some parts of the country. These are some of the projections made by Berkeley Lab climate scientist Michael Wehner and his co-authors on the National Climate Assessment (NCA).