News Center

Berkeley Lab Scientists Discover New Atomically Layered, Thin Magnet

Berkeley Lab scientists have found an unexpected magnetic property in a 2-D material. The new atomically thin, flat magnet could have major implications for a wide range of applications, such as nanoscale memory, spintronic devices, and magnetic sensors.

Coming to a Lab Bench Near You: Femtosecond X-Ray Spectroscopy

Berkeley Lab researchers have, for the first time, captured the ephemeral electron movements in a transient state of a chemical reaction using ultrafast, tabletop X-ray spectroscopy. The researchers used femtosecond pulses of X-ray light to catch the unraveling of a ring molecule that is important in biochemical and optoelectronic processes.

Cellular Contamination Pathway for Plutonium, Other Heavy Elements, Identified

Scientists at Lawrence Berkeley National Laboratory have reported a major advance in understanding the biological chemistry of radioactive metals, opening up new avenues of research into strategies for remedial action in the event of possible human exposure to nuclear contaminants.

Bionic Liquids from Lignin

Bionic liquids – solvents made from lignin and hemicellulose, two by-products of biofuel production – show great promise for liberating fermentable sugars from lignocellulose and improving the economics of biofuels refineries.

Berkeley Lab Researchers Moonlight in “Cleanweb” Sector

By day scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) are researching ways to better tackle our country’s energy and environmental challenges. By night some of them are doing, well, the exact same thing. Using the knowledge from their day jobs some enterprising researchers are harnessing the power of big data to create innovative solutions for conserving water and energy.

All in the Rotation

Berkeley Lab researchers have shed new light on a type of molecular motor used to package the DNA of a number of viruses, including herpes and the adenoviruses. Their findings could help in the development of more effective drugs and inspire the design of new and improved synthetic biomotors.

Reading the Human Genome

Berkeley Lab researchers have achieved a major advance in understanding how genetic information is transcribed from DNA to RNA by providing the first step-by-step look at the biomolecular machinery that reads the human genome.

The Farthest Supernova Yet for Measuring Cosmic History

In 2004 the Supernova Cosmology Project used the Hubble Space Telescope to find a tantalizing supernova that appeared to be almost 10 billion light-years distant. But Berkeley Lab scientists had to wait until a new camera was installed on the Hubble years later before they could confirm the candidate’s identity and redshift as a Type Ia “standard candle.” The spectrum and light curve of supernova SCP-0401 are now known with clarity; it is the supernova furthest back in time that can be used for precise measurements of the expansion history of the universe.

Learning to Read the Genome

As part of the National Institutes of Health’s “model organism Encyclopedia of DNA Elements” (modENCODE) project, Berkeley Lab researchers have made major advances in understanding the complex relationships between the Drosophila genome as recorded by DNA and RNA base pairs and the patterns and physical organization of its chromosomes, both essential for producing a functioning fruit fly. These new insights into reading the genome apply to human beings and many other organisms as well.

Berkeley Lab Awarded $12.8 Million in Stimulus Funds for Health Research

Lawrence Berkeley National Laboratory has been awarded $12.8 million in American Recovery and Reinvestment Act funding by the National Institutes of Health (NIH) for research into cancer, neurodegenerative diseases, radioactive decontamination and a variety of other health conditions.