News Center

New Graphene-Based System Could Help Us ‘See’ Electrical Signaling in Heart and Nerve Cells

Scientists have enlisted the exotic properties of graphene to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields. They hope to enlist the new method to image electrical signaling networks in our hearts and brains.

Finding Diamonds in the Rough

Researchers at the Joint BioEnergy Institute and the Great Lakes Bioenergy Research Center used crystallography and biophysical methods to better understand how the NOV1 enzyme breaks down a a stilbene substrate into two smaller compounds. Understanding this unusual chemical reaction brings insight on how to generate desirable biofuels and bioproducts from biomass deconstruction.

7 Imaging Tools Pushing Science Forward

Berkeley Lab scientists are developing new ways to see the unseen. Here are seven imaging advances (recently reported in our News Center) that are helping to push science forward, from developing better batteries to peering inside cells to exploring the nature of the universe.   1. Seeing DNA nanostructures in 3-D DNA segments can serve as a

Glowing Crystals Can Detect, Cleanse Contaminated Drinking Water

Motivated by public hazards associated with contaminated sources of drinking water, a team of scientists has successfully developed and tested tiny, glowing crystals that can detect and trap heavy-metal toxins like mercury and lead.

X-Rays Capture Unprecedented Images of Photosynthesis in Action

An international team of scientists is providing new insight into the process by which plants use light to split water and create oxygen. In experiments led by Berkeley Lab scientists, ultrafast X-ray lasers were able to capture atomic-scale images of a protein complex found in plants, algae, and cyanobacteria at room temperature.

3-D Imaging Technique Maps Migration of DNA-carrying Material at the Center of Cells

Scientists have produced detailed 3-D visualizations that show an unexpected connectivity in the genetic material at the center of cells, providing a new understanding of a cell’s evolving architecture.

Solar Cells Get Boost with Integration of Water-Splitting Catalyst onto Semiconductor

Berkeley Lab scientists have found a way to engineer the atomic-scale chemical properties of a water-splitting catalyst for integration with a solar cell, and the result is a big boost to the stability and efficiency of artificial photosynthesis. The research comes out of the Joint Center for Artificial Photosynthesis (JCAP), established to develop a cost-effective method of turning sunlight, water, and carbon dioxide into fuel.

Berkeley Lab Takes Home Five R&D 100 Awards for Environmental, Battery, and X-ray Technologies

Berkeley Lab-developed tech enabling energy-saving roofs, long-lived batteries, better data from X-ray experiments, safer drinking water, and reduced carbon dioxide in the atmosphere have received 2016 R&D 100 awards.

Transformational X-ray Project Takes a Step Forward

A proposed upgrade to the Advanced Light Source—which would provide new views of materials and chemistry at the nanoscale with X-ray beams up to 1,000 times brighter than possible now—has cleared the first step in a Department of Energy approval process. The upgrade would enable new explorations of chemical reactions, battery performance, and biological processes.

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

Researchers have observed, for the first time, an exotic 3-D racetrack for electrons in ultrathin slices of a tiny crystal they made at Berkeley Lab.