News Center

$40M to Establish New Observatory Probing Early Universe

Photo - The Simons Array will be located in Chile's High Atacama Desert, at an elevation of about 17,000 feet. The site currently hosts the Atacama Cosmology Telescope (bowl-shaped structure at upper right) and the Simons Array (the three telescopes at the bottom left, middle and right). The Simons Observatory will incorporate several new telescopes and set the stage for a next-generation experiment. (University of Pennsylvania)

A new astronomy facility, the Simons Observatory, is planned in Chile’s Atacama Desert to boost ongoing studies of the evolution of the universe, from its earliest moments to today. The observatory will probe the subtle properties of the universe’s first light, known as cosmic microwave background radiation.

Berkeley Lab, UC Berkeley Scientists to Participate in New NASA Space Telescope Project

Image - A rendering of NASA's WFIRST with a background image of a spiral galaxy and supernova.

Berkeley Lab and UC Berkeley scientists will play a role in a new NASA space telescope project exploring dark energy, alien worlds and the evolution of galaxies, galaxy clusters and the large-scale structure of the universe.

Explore Galaxies Far, Far Away at Internet Speeds

This screenshot, from an interactive Sky Viewer tool, shows a small region of the sky in the vicinity of the galaxy UGC 10041 imaged by the Dark Energy Camera Legacy Survey (DECaLS). Credit: Dustin Lang/University of Toronto

Scientists have released an “expansion pack” for a virtual tour of the universe that you can enjoy from the comfort of your own computer. The latest version of the publicly accessible images of the sky roughly doubles the size of the searchable universe from the project’s original release in May.

Supernova Twins: Making Standard Candles More Standard Than Ever

Supernova Factory group (SN factory) - Greg Aldering, Kyle Boone, Hannah Fakhouri and Saul Perlmutter.

Type Ia supernovae are bright “standard candles” for measuring cosmic distances. Standard enough to discover dark energy, they’re far from identical. Researchers at the Berkeley Lab-based Nearby Supernova Factory have shown that supernova twins with closely matching spectra double the accuracy of distance measures.

DESI, an Ambitious Probe of Dark Energy, Achieves its Next Major Milestone

Paul Preuss DESI-Mayall-sky feature

The U.S. Department of Energy has announced approval of Critical Decision 2 (CD–2), authorizing the scientific scope, schedule, and funding profile of DESI, the Dark Energy Spectroscopic Instrument, an exceptional apparatus designed to improve our understanding of the role of dark energy in the expansion history of the universe.

Supernova Hunting with Supercomputers

Simulation of the expanding debris from a supernova explosion (shown in red) running over and shredding a nearby star (shown in blue).
Image credit: Daniel Kasen, Berkeley Lab/ UC Berkeley

Berkeley researchers provide “roadmap” and tools for finding and studying Type Ia supernovae in their natural habitat

Is Interstellar’s Science So Stellar?

InterstellarAstronaut thumbnail

Interstellar features astronauts who take a wormhole ride to another galaxy to explore planets around a massive black hole. In a conversation last week, Berkeley Lab’s David Schlegel discussed the science in the movie and what Hollywood could learn from scientists about fantastic settings in outer space.

Berkeley Lab Scientists Recipients of 2015 Breakthrough Prizes

Doudna Breakthrough Feature

Berkeley Lab astrophysicist Saul Perlmutter and biochemist Jennifer Doudna were among the featured recipients of the 2015 Breakthrough Prizes in Fundamental Physics and Life Sciences.

Dark Energy Survey Opens Second Season with Catalog of Stunning Deep-Space Images


The Dark Energy Survey has just kicked off its second season of snapping shots of deep space with its 570-megapixel camera mounted on the Victor M. Blanco Telescope in Chile.

Not Much Force: Berkeley Researchers Detect Smallest Force Ever Measured

Mechanical oscillators translate an applied force into measureable mechanical motion. The Standard Quantum Limit is imposed by the Heisenberg uncertainty principle, in which the measurement itself perturbs the motion of the oscillator, a phenomenon known as “quantum back-action.” (Image by Kevin Gutowski)

Berkeley Lab researchers have detected the smallest force ever measured – approximately 42 yoctonewtons – using a unique optical trapping system that provides ultracold atoms. A yoctonewton is one septillionth of a newton.