News Center

Navigating an Ocean of Biological Data in the Modern Era

screen-shot-2016-11-01-at-3-10-46-pm

Scientists and software engineers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have developed a new -omics visualization tool, Arrowland, which combines different realms of functional genomics data in a single intuitive interface. The aim of this system is to provide scientists an easier way to navigate the ever-growing amounts of biological

Scientists Harness CO2 to Consolidate Biofuel Production Process

JBEI scientists have advanced the use of ionic liquids, shown here, to break down cellulosic biomass. The latest development involves the use of carbon dioxide to reversibly adjust the pH level of ionic liquids, greatly simplifying the biofuel production process and lowering cost. (Credit: Roy Kaltschmidt/Berkeley Lab)

JBEI scientists have shown that adding carbon dioxide gas during the deconstruction phase of biofuel production successfully neutralized the toxicity of ionic liquids. The technique, which is reversible, allows the liquid to be recycled, representing a major step forward in streamlining the biofuel production process.

New workflow to help microbe-based biofuels production

Scientist picks up bacterial colonies. (iStockphoto)

The development of omics technologies, such as metabolomics and proteomics, and systems biology have dramatically enhanced the ability to understand biological phenomena. However, the interpretation of large omics data and the understanding of complex metabolic interactions in engineered microbes remains challenging. A new open-source workflow developed by researchers at the Department of Energy’s Joint BioEnergy

Berkeley Lab Scientists Brew Jet Fuel in One-Pot Recipe

Marijke Frederix (left) and Aindrila Mukhopadhyay in a microbiology lab at the Joint BioEnergy Institute. (Credit: Irina Silva/JBEI, Berkeley Lab)

Berkeley Lab scientists have engineered a strain of bacteria that enables a “one-pot” method for producing advanced biofuels from a slurry of pre-treated plant material. The achievement is a critical step in making biofuels a viable competitor to fossil fuels.

From Near-Dropout to PhD, Berkeley Lab Scientist Now at Forefront of Biofuels Revolution

Ee-Been Goh

To see biochemist Ee-Been Goh in the lab today, figuring out how to rewire bacteria to produce biofuels, one would never guess she was once so uninterested in school that she barely made it through junior high. Today she is a project scientist at the Joint BioEnergy Institute (JBEI), a Department of Energy Bioenergy Research Center led by Lawrence Berkeley National Laboratory.

CinderBio Harnesses Extreme Microbes for Greener Industry

(from left) Steve Yannone, Jill Fuss and Adam Barnebey (Photo: Roy Kaltschmidt/Berkeley Lab)

It’s no secret that extremophiles, or microbes that live in places like polar glaciers and toxic waste pools, may hold treasures worth billions. Now basic biology research has led to the formation of CinderBio, a startup co-founded by Berkeley Lab scientists Steve Yannone and Jill Fuss that produces heat- and acid-stable enzymes.

JBEI Joins Elite 100/500 Club

jbei-logo Feature 1

The Joint BioEnergy Institute (JBEI) is now a member of the elite “100/500 Club,” having filed its 100th patent application and published its 500th scientific paper. JBEI is a DOE Bioenergy Research Center led by Berkeley Lab.

Unlocking the Rice Immune System

Rice is a staple for half the world’s population and the model plant for grass-type biofuel feedstocks (Photo courtesy of IRRI)

JBEI, UC Davis and Berkeley Lab researchers have identified a bacterial signaling molecule that triggers an immunity response in rice plants, enabling the plants to resist a devastating blight disease. Rice is not only a staple food, it is the model for grass-type advanced biofuels.

Leaving on a Biofueled Jet Plane

Air travels accounts for about two-percent of the annual greenhouse gas emissions from human activity. A new catalytic process for biofuels could significantly reduce this figure. (courtesy of Boeing)

Researchers at the Energy Biosciences Institute (EBI) have developed a catalytic process for converting sugarcane biomass into a new class of aviation fuel and lubricant base oils that could help biorefineries achieve net life-cycle greenhouse gas savings of up to 80-percent.

Biofuel Proteomics: Joint BioEnergy Institute Researchers Use Proteomics to Profile Switchgrass

Switchgrass is a North American native prairie grass widely viewed as one of the most promising of all the biofuel crop candidates. (Photo courtesy of GLBRC)

JBEI researchers used advanced proteomic techniques to identify 1,750 unique proteins in shoots of switchgrass, a native prairie grass viewed as one of the most promising of all the plants that could be used to produce advanced biofuels.