News Center

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle’s protein shell. This work could benefit research in bioenergy and pathogenesis, and it could lead to new methods of bioengineering bacteria for beneficial purposes.

Researchers Find New Mechanism for Genome Regulation

The mechanisms that separate mixtures of oil and water may also help the organization of a part of our DNA called heterochromatin, according to a new Berkeley Lab study. Researchers found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

Sequencing of Green Alga Genome Provides Blueprint to Advance Clean Energy, Bioproducts

Scientists have sequenced the genome of a green alga that has drawn commercial interest as a strong producer of quality lipids for biofuel production. The chromosome-assembly genome of Chromochloris zofingiensis provides a blueprint for new discoveries in producing sustainable biofuels, antioxidants, and other valuable bioproducts.

Scientists Sequence Genome of Snail That Spreads Parasitic Worm

Scientists have characterized the genome of a freshwater snail that is instrumental in transmitting a parasitic worm to humans. The achievement could help researchers disrupt the life cycle of B. glabrata and potentially eliminate schistosomiasis, also known as snail fever.

Could This Enzyme Help Turn Biofuel Waste into Something Useful?

Researchers at the Joint BioEnergy Institute are looking to common soil bacteria for help in converting aryl compounds, a common waste product from biofuels synthesis, into something of value.

Cryo-Electron Microscopy Achieves Unprecedented Resolution Using New Computational Methods

Cryo-electron microscopy (cryo-EM)—which enables the visualization of viruses, proteins, and other biological structures at the molecular level—is a critical tool used to advance biochemical knowledge. Now Lawrence Berkeley National Laboratory (Berkeley Lab) researchers have extended cryo-EM’s impact further by developing a new computational algorithm that was instrumental in constructing a 3-D atomic-scale model of bacteriophage

New Machine Learning Technique Provides Translational Results

A team of scientists at Berkeley Lab has developed an unsupervised multi-scale machine learning technique that can automatically and specifically capture biomedical events or concepts directly from raw data.

What a Genome-Wide Screening Can Reveal about Cancer Survival

Berkeley Lab researchers have developed a 12-gene score tied to the odds of relapse-free breast cancer survival. The scoring system is based on an analysis of large genomic datasets and patient data, and it could eventually be developed for clinical use.

Thirdhand Smoke Affects Weight, Blood Cell Development in Mice

Berkeley Lab researchers found that the sticky residue left behind by tobacco smoke led to changes in weight and blood cell count in mice. These latest findings add to a growing body of evidence that thirdhand smoke exposure may be harmful.

Berkeley Lab Gets $4.6M in Functional Genomics Catalog Project

Berkeley Lab is set to receive $4.6 million over four years as part of an ongoing, federally funded project to create a comprehensive catalog for fundamental genomics research. This latest expansion of the Encyclopedia of DNA Elements (ENCODE) project, or ENCODE 4, is funded by the National Human Genome Research Institute.