News Center

Berkeley Lab to Investigate Link between Thirdhand Smoke and Cancer


Berkeley Lab researchers have been awarded $1.3 million for two sets of studies to better understand the health impacts of thirdhand smoke, the noxious residue that clings to virtually all indoor surfaces long after the secondhand smoke from a cigarette has cleared out.

Time-Lapse Analysis Offers New Look at How Cells Repair DNA Damage


Time-lapse imaging can make complicated processes easier to grasp. Berkeley Lab scientists are using a similar approach to study how cells repair DNA damage. Microscopy images are acquired about every thirty minutes over a span of up to two days, and the resulting sequence of images shows ever-changing hotspots inside cells where DNA is under repair.

Berkeley Lab Scientists to Develop Better Way to Screen Chemicals for Cancer-Causing Effects


Berkeley Lab scientists are developing a cell culture that could help researchers better identify chemicals that increase breast cancer susceptibility. The scientists will grow the culture using adult stem cells obtained from breast tissue. Their test will show if a chemical causes a breakdown in cell-to-cell communication, which is a fundamental defect of cancer.

New Clues About the Risk of Cancer From Low-dose Radiation

mouse thumbnail

Berkeley Lab scientists studied mice and found their risk of mammary cancer from low-dose radiation depends a great deal on their genetic makeup. They also learned key details about how genes and the cells immediately surrounding a tumor (also called the tumor microenvironment) affect cancer risk.

Grants Give Particle Accelerator Technologies a Boost


Berkeley Lab researchers have won two grants from the DOE and NCI that focus on particle beam-based therapies for treating cancer as well as on building faster, more powerful lasers for accelerators.

For Important Tumor-Suppressing Protein, Context is Key

Illustration of p53 binding to major categories of repeats in the human genome, such as LTR, SINE and LINE.

Berkeley Lab scientists have learned new details about how an important tumor-suppressing protein, called p53, binds to the human genome. As with many things in life, they found that context makes a big difference.

Scientists Develop New Way to Study How Human Cells Become Immortal, a Crucial Precursor to Cancer

The left image shows the chromosomes of an immortal cell line derived by treatment with a chemical carcinogen. It has an aberrant number and arrangement of chromosomes. This line had to generate the errors that allowed immortalization. The right image shows the chromosomes of an immortal line derived using the new Berkeley Lab method. It has the normal number of 46 chromosomes arranged in 23 pairs. Because of their normal karyotype, these new immortal cell lines may help scientists better understand cell immortalization as it occurs in people. (Image credit: Arthur Brothman and Laura Fuchs, left image; Karen Swisshelm, right image).

Berkeley Lab scientists have developed a new method that can easily create immortal human mammary epithelial cells. The cells could greatly facilitate the examination of cell immortalization as it actually occurs during cancer progression.

New Clues to Why Older Women are More Vulnerable to Breast Cancer

These fluorescent images of human mammary epithelial cells exemplify the effects of aging. In the left image, multipotent progenitor cells from a 19-year-old young woman respond to a tumor-mimicking stiff surface by differentiating into red-colored tumor-suppressing myoepithelial cells. In the right image, progenitor cells from a 66-year-old woman fail to launch this putative cancer-fighting response when exposed to a stiff surface. (Credit: Pelissier/LaBarge)

Berkeley Lab scientists have gained more insights into why older women are more susceptible to breast cancer. They found that as women age, the cells responsible for maintaining healthy breast tissue stop responding to their immediate surroundings, including mechanical cues that should prompt them to suppress nearby tumors.

New Details on Microtubules and How the Anti-Cancer Drug Taxol Works

The most detailed look ever at the assembly and disassembly of microtubules, tiny fibers of tubulin protein that play a crucial role in cell division, provides new insight into the success of the anti-cancer drug Taxol.

Berkeley Lab researchers have produced images of microtubule assembly and disassembly at the unprecedented resolution of 5 angstroms, providing new insight into the success of the anti-cancer drug Taxol and pointing the way to possible improvements.

Vast Gene-Expression Map Yields Neurological and Environmental Stress Insights

A consortium led by Berkeley Lab scientists has conducted the largest survey yet of how information encoded in an animal genome is processed in different organs, stages of development, and environmental conditions. Their findings, based on fruit fly research, paint a new picture of how genes function in the nervous system and in response to environmental stress.