News Center

Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe.

Scientists Trace ‘Poisoning’ in Chemical Reactions to the Atomic Scale

A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.

Solar Cells Get Boost with Integration of Water-Splitting Catalyst onto Semiconductor

Berkeley Lab scientists have found a way to engineer the atomic-scale chemical properties of a water-splitting catalyst for integration with a solar cell, and the result is a big boost to the stability and efficiency of artificial photosynthesis. The research comes out of the Joint Center for Artificial Photosynthesis (JCAP), established to develop a cost-effective method of turning sunlight, water, and carbon dioxide into fuel.

Scientists Rev Up Speed of Bionic Enzyme Reactions

Bionic enzymes got a needed boost in speed thanks to new research at Berkeley Lab. By pairing a noble metal with a natural enzyme, scientists created a hybrid capable of churning out molecules at a rate comparable to biological counterparts.

New Discovery Could Better Predict How Semiconductors Weather Abuse

Berkeley Lab scientists at DOE’s Joint Center for Artificial Photosynthesis have found a way to better predict how thin-film semiconductors weather the harsh conditions in systems that convert sunlight, water and carbon dioxide into fuel.

Five Berkeley Lab Researchers Receive DOE Early Career Research Awards

Five researchers at Berkeley Lab were named today as recipients of the Early Career Research Program managed by the U.S. Department of Energy’s Office of Science. The program is designed to bolster the nation’s scientific workforce by providing support to exceptional researchers during the crucial early career years, when many scientists do their most formative work.

Soaking Up Carbon Dioxide and Turning it into Valuable Products

Berkeley Lab researchers have incorporated molecules of porphyrin CO2 catalysts into the sponge-like crystals of covalent organic frameworks (COFs) to create a molecular system that not only absorbs CO2, but also selectively reduces it to CO, a primary building block for a wide range of chemical products.

Another Milestone in Hybrid Artificial Photosynthesis

Berkeley Lab researchers using a bioinorganic hybrid approach to artificial photosynthesis have combined semiconducting nanowires with select microbes to create a system that produces renewable molecular hydrogen and uses it to synthesize carbon dioxide into methane, the primary constituent of natural gas.

A Robot Chemist, at Your Service

Earlier this year, Berkeley Lab’s Molecular Foundry got a new suite of robotic synthesis tools called the Overture and the Symphony X (pictured above), automated chemical synthesizers that assemble custom molecular structures called peptoids. Peptoid nanostructures, pioneered at Berkeley Lab, have molecular shapes similar to biological molecules like proteins, but are made with synthetic building

Making a Good Thing Better: Berkeley Lab Researchers Open a Possible Avenue to Better Electrolyte for Lithium Ion Batteries

Berkeley Lab researchers carried out the first X-ray absorption spectroscopy study of a model electrolyte for lithium-ion batteries and may have found a pathway forward to improving LIBs for electric vehicles and large-scale electrical energy storage.