News Center

Supernova Twins: Making Standard Candles More Standard Than Ever

Supernova Factory group (SN factory) - Greg Aldering, Kyle Boone, Hannah Fakhouri and Saul Perlmutter.

Type Ia supernovae are bright “standard candles” for measuring cosmic distances. Standard enough to discover dark energy, they’re far from identical. Researchers at the Berkeley Lab-based Nearby Supernova Factory have shown that supernova twins with closely matching spectra double the accuracy of distance measures.

DESI, an Ambitious Probe of Dark Energy, Achieves its Next Major Milestone

Paul Preuss DESI-Mayall-sky feature

The U.S. Department of Energy has announced approval of Critical Decision 2 (CD–2), authorizing the scientific scope, schedule, and funding profile of DESI, the Dark Energy Spectroscopic Instrument, an exceptional apparatus designed to improve our understanding of the role of dark energy in the expansion history of the universe.

Supernova Hunting with Supercomputers

Simulation of the expanding debris from a supernova explosion (shown in red) running over and shredding a nearby star (shown in blue).
Image credit: Daniel Kasen, Berkeley Lab/ UC Berkeley

Berkeley researchers provide “roadmap” and tools for finding and studying Type Ia supernovae in their natural habitat

Confirmed: Stellar Behemoth Self-Destructs in a Type IIb Supernova

The Palomar 48 inch telescope. (Photo by: Iair Arcavi, Weizmann Instiute of Science)

Wolf-Rayet stars, more than 20 times as massive as the Sun and at least five times as hot, are relatively rare and often obscured. Scientists don’t know much about how they form, live and die.

BOSS Quasars Track the Expanding Universe – the Most Precise Measurement Yet

The Baryon Oscillation Spectroscopic Survey (BOSS) pioneered the use of quasars to chart the universe’s expansion and investigate the properties of dark energy through studies of large-scale structure. New techniques of analysis led by Berkeley Lab scientists, combined with other new BOSS quasar measures of the young universe’s structure, have produced the most precise measurement of expansion since galaxies formed.

Setting a Trap for Gravity Waves

In 1996 Uros Seljak was a postdoc at Harvard, contemplating ways to extract information from the cosmic microwave background (CMB). The distribution of anisotropies, slight temperature differences, in the CMB had much to say about the large-scale structure of the universe. If it were also possible to detect the polarization of the CMB itself, however,

BOSS Measures the Universe to One-Percent Accuracy

The Baryon Oscillation Spectroscopic Survey (BOSS), the largest component of the third Sloan Digital Sky Survey, has measured the clustering of nearly 1.3 million galaxies spectroscopically to determine the “standard ruler” of the universe’s large-scale structure to within one percent. This is the most precise such measurement ever made and is likely to establish the standard for years to come.

Searching for Cosmic Accelerators Via IceCube


In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider at CERN, but scientists don’t know what or where these cosmic accelerators are. New results reported from “IceCube,” the neutrino observatory buried at the South Pole, may show the way.

Searching for Cosmic Accelerators Via IceCube

New results from IceCube, the neutrino observatory buried at the South Pole, may show the way to locating and identifying cosmic accelerators in our galaxy that are 40 million times more powerful than the Large Hadron Collider at CERN.

First Hundred Thousand Years of Our Universe

Berkeley Lab researchers take the furthest look back through time yet – 100 years to 300,000 years after the Big Bang – and find tantalizing new hints of clues as to what might have happened.