News Center

Lord of the Microrings

Berkeley Lab researchers report a significant breakthrough in laser technology with the development of a unique microring laser cavity that can produce single-mode lasing on demand. This advance holds ramifications for a wide range of optoelectronic applications including metrology and interferometry, data storage and communications, and high-resolution spectroscopy.

Competition for Graphene

Berkeley Lab reports the first experimental observation of ultrafast charge transfer in photo-excited MX2 materials, the graphene-like two-dimensional semiconductors. Charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

Advanced Light Source Provides New Look at Skyrmions: Results Hold Promise for Spintronics

At Berkeley Lab’s Advanced Light Source, researchers for the first time have used x-rays to observe and study skyrmions, subatomic quasiparticles that could play a key role in future spintronic technologies.

Manipulating and Detecting Ultrahigh Frequency Sound Waves

Berkeley Lab researchers have demonstrated a technique for detecting and controlling ultrahigh frequency sound waves at the nanometer scale. This represents an advance towards next generation ultrasonic imaging with potentially 1,000 times higher resolution than today’s medical ultrasounds.

2D Transistors Promise a Faster Electronics Future

Faster electronic device architectures are in the offing with the unveiling of the world’s first fully two-dimensional field-effect transistor (FET) by researchers with Lawrence Berkeley National Laboratory (Berkeley Lab). Unlike conventional FETs made from silicon, these 2D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a

Lighting the Way to Graphene-based Devices: Berkeley Lab Researchers Use Light to Dope Graphene Boron Nitride Heterostructures

Berkeley Lab researchers have demonstrated a technique whereby semiconductors made from graphene and boron nitride can be charge-doped to alter their electronic properties using only visible light.

Probing dopant distribution: Finding by Berkeley Lab Researchers at the Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

Berkeley Lab researchers at the Molecular Foundry have shown that when doping a semiconductor to alter its electrical properties, equally important as the amount of dopant is how the dopant is distributed on the surface and throughout the material.

Edgy Look at 2D Molybdenum Disulfide

Berkeley Lab researchers have recorded the first observations of a strong nonlinear optical resonance along the edges of single layers of molybdenum disulfide that could be key to the use of this and similar 2D semiconductors in future nanoelectronic devices.

A Glassy Look for Manganites: Berkeley Lab Researchers at the ALS Observe Glass-like Behavior in the Electron-Spins of PCMO Crystals

Researchers at the Advanced Light Source discovered a glass-like re-ordering of electron-spin states as manganite crystals recovered from a photo-excited conductor state back to an insulator state. The discovery holds promise for future ultrafast electronic switching and memory devices.

Discovery of New Semiconductor Holds Promise for 2D Physics and Electronics

Researchers at Berkeley Lab’s Molecular Foundry have discovered a unique new two-dimensional semiconductor, rhenium disulfide, that behaves electronically as if it were a 2D monolayer even as a 3D bulk material. This not only opens the door to 2D electronic applications with a 3D material, it also makes it possible to study 2D physics with easy-to-make 3D crystals.