News Center

New Technique for Identifying Gene-Enhancers

Berkeley Lab researchers led the development of a new technique for identifying gene enhancers – sequences of DNA that act to amplify the expression of a specific gene – in the genomes of humans and other mammals. Called SIF-seq, this new technique complements existing genomic tools, such as ChIP-seq, and offers additional benefits.

Vast Gene-Expression Map Yields Neurological and Environmental Stress Insights

A consortium led by Berkeley Lab scientists has conducted the largest survey yet of how information encoded in an animal genome is processed in different organs, stages of development, and environmental conditions. Their findings, based on fruit fly research, paint a new picture of how genes function in the nervous system and in response to environmental stress.

New Insight into an Emerging Genome-Editing Tool

A collaboration led by Berkeley Lab’s Jennifer Doudna and Eva Nogales has produced the first detailed look at the 3D structure of the Cas9 enzyme and how it partners with guide RNA to interact with target DNA. The results should enhance Cas9’s value and versatility as a genome-editing tool.

Puzzling Question in Bacterial Immune System Answered

Berkeley researchers have answered a central question about Cas9, an enzyme that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering: How is Cas9 able to precisely discriminate between non-self DNA that must be degraded and self DNA that may be almost identical within genomes that are millions to billions of base pairs long.

Microbial Who-Done-It For Biofuels

A multi-institutional collaboration led by researchers with the Joint BioEnergy Institute (JBEI) and Joint Genome Institute (JGI) has developed a promising technique for identifying microbial enzymes that can effectively deconstruct biomass into fuel sugars under refinery processing conditions.

Expressly Unfit for the Laboratory

A new Berkeley Lab study challenges the orthodoxy of microbiology, which holds that in response to environmental changes, bacterial genes will boost production of needed proteins and decrease production of those that aren’t. The study found that for bacteria in the laboratory there was little evidence of adaptive genetic response.

Genome-wide Atlas of Gene Enhancers in the Brain On-line

A new genome-wide digital atlas of gene enhancers in the brain  will enable detailed scientific studies of gene regulation and the impacts of genetic mutations on neurological disorders.

Berkeley Lab researchers have unveiled a first-of-its-kind atlas of gene-enhancers in the brain that should greatly benefit future research into the underlying causes of neurological disorders such as autism, epilepsy and schizophrenia.

Berkeley Lab Researchers Create First of Its Kind Gene Map of Sulfate-reducing Bacterium:

Desulfovibrio vulgaris is an anaerobic sulfate-eating microbe that can also consume toxic and radioactive waste, making it a prime candidate for bioremediation of contaminated environments. (Photo courtesy of Berkeley Lab)

Critical genetic secrets of a bacterium that holds potential for removing toxic and radioactive waste from the environment have been revealed in a study led by Berkeley Lab researchers. The researchers have created a first-of-its-kind gene map of Desulfovibrio vulgaris, which can be used to identify the genes that determine how these bacteria interact with their surrounding environment.

Genome-scale Network of Rice Genes to Speed the Development of Biofuel Crops

This graphic is a full-size view of a RiceNet layout, color-coded to indicate the likelihood of network links; red for higher and blue for lower likelihood scores. (Image from Ronald, et. al)

Researchers at the Joint BioEnergy Institute have developed the first genome-scale model for predicting the functions of genes and gene networks in a grass species. Called RiceNet, this systems-level model of rice gene interactions should help speed the development of new crops for the production of advanced biofuels, as well as help boost the production and improve the quality of one of the world’s most important food staples.

Berkeley Lab Researchers Win Four Early Career Awards

Junqiao wu cropped

Berkeley Lab researchers have won four DOE Office of Science Early Career Research Program awards, in the second year of the planned annual award program. The five-year, $2.5 million awards are intended to support young scientists in the formative stages of their careers. The winners were chosen from over a thousand applicants by outside scientific experts.