News Center

Seeing Atoms and Molecules in Action with an Electron ‘Eye’

A unique rapid-fire electron source—originally built as a prototype for driving next-generation X-ray lasers—will help scientists at Berkeley Lab study ultrafast chemical processes and changes in materials at the atomic scale.

Construction Begins on Major Upgrade to World’s Brightest X-ray Laser

Berkeley Lab scientists are developing key components for LCLS-II, a major X-ray laser upgrade and expansion project that will enable new atomic-scale explorations with up to 1 million ultrabright X-ray pulses per second.

Berkeley Lab Working on Key Components for LCLS-II X-ray Lasers

  X-ray free-electron lasers, first realized a decade ago, produce the brightest X-rays on the planet, and scientists tap into these unique X-rays to explore matter at the atomic scale and observe processes that occur in just quadrillionths of a second. As the name suggests, an X-ray free-electron laser requires electrons—lots of them, and in

Revealing the Fluctuations of Flexible DNA in 3-D

Scientists have captured the first high-resolution 3-D images from individual double-helix DNA segments attached to gold nanoparticles, which could aid in the use of DNA segments as building blocks for molecular devices that function as nanoscale drug-delivery systems, markers for biological research, and components for electronic devices.

Unlocking the Secrets of Gene Expression

Using cryo-electron microscopy (cryo-EM), Lawrence Berkeley National Laboratory scientist Eva Nogales and her team have made a significant breakthrough in our understanding of how our molecular machinery finds the right DNA to copy, showing with unprecedented detail the role of a powerhouse transcription factor known as TFIID.

New Form of Electron-beam Imaging Can See Elements that are ‘Invisible’ to Common Methods

A new Berkeley Lab-developed electron-beam imaging technique, tested on samples of nanoscale gold and carbon, greatly improves images of light elements. The technique can reveal structural details for materials that would be overlooked by some traditional methods.

Most Precise Measurement of Energy Range for Particles Produced by Nuclear Reactors Reveals Surprises

An international team that includes researchers from Berkeley Lab has captured the most precise—and puzzling—energy measurements yet of ghostly particles called reactor antineutrinos produced at a nuclear power complex in China.

Scientists Take Key Step Toward Custom-made Nanoscale Chemical Factories

Scientists have for the first time reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. The new design provides an entirely new functionality that greatly expands the potential for these compartments to serve as custom-made chemical factories.

New Galaxy-hunting Sky Camera Sees Redder Better

A newly upgraded camera that incorporates light sensors developed at Berkeley Lab is one of the best cameras on the planet for studying outer space at red wavelengths too red for the human eye to see.

Diamonds May Be the Key to Future NMR/MRI Technologies

Berkeley Lab researchers have demonstrated that diamonds may hold the key to the future for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies. NMR/MRI signals were significantly strengthened through the hyperpolarization of carbon-13 nuclei in diamond using microwaves.