News Center

New workflow to help microbe-based biofuels production

Scientist picks up bacterial colonies. (iStockphoto)

The development of omics technologies, such as metabolomics and proteomics, and systems biology have dramatically enhanced the ability to understand biological phenomena. However, the interpretation of large omics data and the understanding of complex metabolic interactions in engineered microbes remains challenging. A new open-source workflow developed by researchers at the Department of Energy’s Joint BioEnergy

Berkeley Lab Scientists Brew Jet Fuel in One-Pot Recipe

Marijke Frederix (left) and Aindrila Mukhopadhyay in a microbiology lab at the Joint BioEnergy Institute. (Credit: Irina Silva/JBEI, Berkeley Lab)

Berkeley Lab scientists have engineered a strain of bacteria that enables a “one-pot” method for producing advanced biofuels from a slurry of pre-treated plant material. The achievement is a critical step in making biofuels a viable competitor to fossil fuels.

From Near-Dropout to PhD, Berkeley Lab Scientist Now at Forefront of Biofuels Revolution

Ee-Been Goh

To see biochemist Ee-Been Goh in the lab today, figuring out how to rewire bacteria to produce biofuels, one would never guess she was once so uninterested in school that she barely made it through junior high. Today she is a project scientist at the Joint BioEnergy Institute (JBEI), a Department of Energy Bioenergy Research Center led by Lawrence Berkeley National Laboratory.

New Way to Reduce Plant Lignin Could Lead to Cheaper Biofuels

This illustration shows the molecular structure of HCT that was derived at Berkeley Lab's Advanced Light Source. The purple and green areas are two domains of the enzyme, and the multi-colored structures between the two domains are two molecules (p-coumaryl-shikimate and HS-CoA) in the binding site. New research shows this binding site is indiscriminate with the acceptor molecules it recruits, including molecules that inhibit lignin production. (Credit: Berkeley Lab)

Scientists have shown that an enzyme can be tweaked to reduce lignin in plants. Their technique could help lower the cost of converting biomass into carbon-neutral fuels to power your car and other sustainably developed bio-products.

One-Stop Shop for Biofuels

Blake and Seema featured

Researchers at the Joint BioEnergy Institute (JBEI) have developed a “high-gravity” one-pot process for producing ethanol from cellulosic biomass that gives unprecedented yields while minimizing water use and waste disposal.

JBEI Joins Elite 100/500 Club

jbei-logo Feature 1

The Joint BioEnergy Institute (JBEI) is now a member of the elite “100/500 Club,” having filed its 100th patent application and published its 500th scientific paper. JBEI is a DOE Bioenergy Research Center led by Berkeley Lab.

Unlocking the Rice Immune System

Rice is a staple for half the world’s population and the model plant for grass-type biofuel feedstocks (Photo courtesy of IRRI)

JBEI, UC Davis and Berkeley Lab researchers have identified a bacterial signaling molecule that triggers an immunity response in rice plants, enabling the plants to resist a devastating blight disease. Rice is not only a staple food, it is the model for grass-type advanced biofuels.

Biofuel Proteomics: Joint BioEnergy Institute Researchers Use Proteomics to Profile Switchgrass

Switchgrass is a North American native prairie grass widely viewed as one of the most promising of all the biofuel crop candidates. (Photo courtesy of GLBRC)

JBEI researchers used advanced proteomic techniques to identify 1,750 unique proteins in shoots of switchgrass, a native prairie grass viewed as one of the most promising of all the plants that could be used to produce advanced biofuels.

Sweet Smell of Success: JBEI Researchers Boost Methyl Ketone Production in E. coli

Methyl ketones were discovered more than a century ago in the aromatic evergreen rue plant. They are now used to provide scents in essential oils and flavoring in cheese, but JBEI research shows they could also serve as advanced biofuels. (Image from Wikimedia Commons)

JBEI researchers have engineered E. coli bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel.

New Lab Startup Afingen Uses Precision Method to Enhance Plants

XBD201301-01919.TIF

By manipulating a plant’s metabolic pathways, two scientists at Berkeley Lab, Henrik Scheller and Dominique Loqué, have figured out a way to genetically rewire plants to allow for an exceptionally high level of control over the spatial pattern of gene expression, while at the same time boosting expression to very high levels. Now they have launched a startup company called Afingen to apply this technology for developing low-cost biofuels that could be cost-competitive with gasoline and corn ethanol.