News Center

Encyclopedia of How Genomes Function Gets Much Bigger

thnumbnail

A big step in understanding the mysteries of the human genome was unveiled today in the form of three analyses that provide the most detailed comparison yet of how the genomes of the fruit fly, roundworm, and human function. The analyses will likely offer insights into how the information in the human genome regulates development, and how it is responsible for diseases.

Excessive Running or Walking May Eliminate Health Gains in Heart Attack Survivors, Finds Berkeley Lab Research

running1

Heart attack survivors who exceed 30 miles of running per week may lose the health benefits accrued by running less, according to new research by Berkeley Lab’s Paul T. Williams and colleagues.

Recently Identified Molecule Could Lead to New Way to Repair Tendons

tendon thumbnail

It’s an all-too familiar scenario for many people. You sprain your ankle or twist your knee. If you’re an adult, the initial pain is followed by a long road of recovery, with no promise that the torn ligament or tendon will ever regain its full strength. That’s because tendon and ligament cells in adults produce

Berkeley Lab Wins Three 2014 R&D 100 Awards

biosig

Berkeley Lab has won three 2014 R&D 100 awards. This year’s winners include a fast way to analyze the chemical composition of cells, a suite of genetic tools to improve crops, and a method to screen images of 3-D cell cultures for cancer cells. The technologies could lead to advances in biofuels, food crops, drug development, and biomaterials, and a to better understanding of microbial communities, to name a few potential benefits.

New Clues to Why Older Women are More Vulnerable to Breast Cancer

These fluorescent images of human mammary epithelial cells exemplify the effects of aging. In the left image, multipotent progenitor cells from a 19-year-old young woman respond to a tumor-mimicking stiff surface by differentiating into red-colored tumor-suppressing myoepithelial cells. In the right image, progenitor cells from a 66-year-old woman fail to launch this putative cancer-fighting response when exposed to a stiff surface. (Credit: Pelissier/LaBarge)

Berkeley Lab scientists have gained more insights into why older women are more susceptible to breast cancer. They found that as women age, the cells responsible for maintaining healthy breast tissue stop responding to their immediate surroundings, including mechanical cues that should prompt them to suppress nearby tumors.

Vast Gene-Expression Map Yields Neurological and Environmental Stress Insights

A consortium led by Berkeley Lab scientists has conducted the largest survey yet of how information encoded in an animal genome is processed in different organs, stages of development, and environmental conditions. Their findings, based on fruit fly research, paint a new picture of how genes function in the nervous system and in response to environmental stress.

First Look at How Individual Staphylococcus Cells Adhere to Nanostructures Could Lead to New Ways to Thwart Infections

A team of researchers led by Berkeley Lab scientists have explored how individual Staphylococcus cells glom onto metallic nanostructures of various shapes and sizes that are not much bigger than the cells themselves. Their work could lead to a more nuanced understanding of what makes a surface less inviting to bacteria.

New Insight into an Emerging Genome-Editing Tool

A collaboration led by Berkeley Lab’s Jennifer Doudna and Eva Nogales has produced the first detailed look at the 3D structure of the Cas9 enzyme and how it partners with guide RNA to interact with target DNA. The results should enhance Cas9’s value and versatility as a genome-editing tool.

Berkeley Lab Startup Wants to Know How Damaged Your DNA Is

Berkeley Lab scientist Sylvain Costes has come up with a way to automate the job of screening for DNA damage, using a proprietary algorithm and a machine to scan specimens and objectively score the damaged DNA. Now he has launched Exogen Biotechnology to commercialize the technology and, he hopes, make tests for DNA damage as common as a cholesterol test.

How a Shape-shifting DNA-repair Machine Fights Cancer

Maybe you’ve seen the movies or played with toy Transformers, those shape-shifting machines that morph in response to whatever challenge they face. It turns out that DNA-repair machines in your cells use a similar approach to fight cancer and other diseases, according to new research led by Berkeley Lab scientists.