News Center

X-Rays Capture Unprecedented Images of Photosynthesis in Action

Structure of the oxygen evolving complex in photosystem II in a light-activated state. Water molecules are shown as blue spheres, the four manganese atoms in purple, the calcium in green and the bridging oxygens in red. The blue mesh is the experimental electron density, and the blue solid lines are the protein side chains that provide a scaffold for the catalytic complex.

An international team of scientists is providing new insight into the process by which plants use light to split water and create oxygen. In experiments led by Berkeley Lab scientists, ultrafast X-ray lasers were able to capture atomic-scale images of a protein complex found in plants, algae, and cyanobacteria at room temperature.

The Incredible Shrinking Particle Accelerator

Exascale cover

Particle accelerators are on the verge of transformational breakthroughs—and advances in computing power and techniques are a big part of the reason. Long valued for their role in scientific discovery and in medical and industrial applications such as cancer treatment, food sterilization and drug development, particle accelerators, unfortunately, occupy a lot of space and carry

Nanoscale Tetrapods Could Provide Early Warning of a Material’s Failure

tetrapod-thumbnail

Light-emitting, four-armed nanocrystals could someday form the basis of an early warning system in structural materials by revealing microscopic cracks that portend failure.

Berkeley Lab to Lead 5 Exascale Projects, Support 6 Others

Exascale cover

Scientists at Berkeley Lab will lead or play key roles in developing 11 critical research applications for next-generation supercomputers as part of DOE’s Exascale Computing Project (ECP). The ECP announced Sept. 7 that it has selected 15 application development proposals for full funding—of which Berkeley Lab will lead two and support four others—and seven proposals for “seed” funding, three of which will be led by Berkeley Lab, which will also support two others.

Energy Department to Invest $16 Million in Computer Design of Materials

NERSC Cray Cori supercomputer at Wang Hall - graphic panels installation - November 09, 2015.

The U.S. Department of Energy announced today that it will invest $16 million over the next four years to accelerate the design of new materials through use of supercomputers. Two four-year projects—including one team led by Berkeley Lab — will leverage the Lab’s expertise in materials and take advantage of superfast computers at DOE national laboratories to develop software for designing new functional materials to revolutionize applications in alternative and renewable energy, electronics, and more.

Berkeley Lab Scientists Part of New Particle-hunting Season at CERN’s LHC

Image - A computerized representation of a proton-proton collision taken in the ALICE detector during the latest commissioning phase of CERN'S LHC, with low-intensity beams. (Credit: CERN)

Scientists at Berkeley Lab will be sifting through loads of new data expected from the latest experimental run at CERN’s Large Hadron Collider.

Updated Workflows for New LHC

ATLASEndcap1

After a massive upgrade, the Large Hadron Collider (LHC), the world’s most powerful particle collider is now smashing particles at an unprecedented 13 tera-electron-volts (TeV)—nearly double the energy of its previous run from 2010-2012. In just one second, the LHC can now produce up to 1 billion collisions and generate up to 10 gigabytes of

Some Like it Hot: Simulating Single Particle Excitations

Changes of charge density, ‘sloshes‘ from one side to the other within the nanoparticle. Image is charge density at time, with the ground state charge density subtracted.

Understanding and manipulating plasmons is important for their potential use in photovoltaics, solar cell water splitting, and sunlight-induced fuel production from CO2. Berkeley Lab researchers have used a real-time numerical algorithm to study both the plasmon and hot carrier within the same framework. That is critical for understanding how long a particle stays excited, and whether there is energy backflow from hot carrier to plasmon.

New Results from World’s Most Sensitive Dark Matter Detector

A view inside the LUX detector. (Photo by Matthew Kapust/Sanford Underground Research Facility)

A new set of calibration techniques employed by LUX scientists has again dramatically improved the detector’s sensitivity.

Berkeley Lab Opens State-of-the-Art Facility for Computational Science

Berkeley Lab's Wang Hall - computer research facility - exterior photos taken July 6, 2015.

A new center for advancing computational science and networking at research institutions and universities across the country opened today at Berkeley Lab. Named Wang Hall, the facility will house the National Energy Research Scientific Computing Center (NERSC), one of the world’s leading supercomputing centers for open science, and be the center of operations for DOE’s Energy Sciences Network (ESnet), the fastest network dedicated to science.