LBNL Masthead A-Z Index Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search
Search the News Center:
Posts Tagged ‘new materials’

A Micro-Muscular Break Through

December 19, 2013

Berkeley Lab researchers have demonstrated a micro-sized robotic torsional muscle/motor made from vanadium dioxide that for its size is a thousand times more powerful than a human muscle, able to catapult objects 50 times heavier than itself over a distance five times its length faster than the blink of an eye.


Overcoming Brittleness: New Insights into Bulk Metallic Glass

November 15, 2013

Berkeley Lab researchers have found a bulk metallic glass based on palladium that’s as strong as the best composite bulk metallic glasses and comparable to steel, aluminum and titanium.


Tetrapod Quantum Dots Light the Way to Stronger Polymers

July 29, 2013

Berkeley Lab researchers have developed advanced opto-mechanical stress probes based on tetrapod quantum dots (tQDs) that allow precise measurement of the tensile strength of polymer fibers with minimal impact on the polymer’s mechanical properties. These fluorescent tQDs could lead to stronger, self-repairing polymer nanocomposites.


Development of New Advanced Materials to Get Boost

June 24, 2013

The Materials Project—an open-access Google-like database for materials research developed by Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT)—is working with Intermolecular, Inc. to enhance the tool’s modeling capabilities and thus accelerate the speed of new material development by tenfold or more over conventional approaches. New materials are key to addressing challenges in energy, healthcare and national security.


Berkeley Lab Researchers Use Metamaterials to Observe Giant Photonic Spin Hall Effect

March 21, 2013

Engineering a unique metamaterial of gold nanoantennas, Berkeley Lab researchers were able to obtain the strongest signal yet of the photonic spin Hall effect, an optical phenomenon of quantum mechanics that could play a prominent role in the future of computing.


Surprising Control over Photoelectrons from a Topological Insulator

March 12, 2013

Electrons flowing swiftly across the surface of topological insulators (TIs) are “spin polarized,” their spin and momentum locked. This new way to control electron distribution in spintronic devices makes TIs a hot topic in materials science. Now Berkeley Lab scientists have discovered more surprises: contrary to assumptions, the spin polarization of photoemitted electrons from a topological insulator is wholly determined in three dimensions by the polarization of the incident light beam.


Blocking Infinity in a Topological Insulator

February 6, 2013

In bulk, topological insulators (TIs) are good insulators, but on their surface they act as metals, with a twist: the spin and direction of electrons moving across the surface of a TI are locked together. TIs offer unique opportunities to control electric currents and magnetism, and new research by a team of scientists from China [...]


Space-Age Ceramics Get Their Toughest Test:

December 10, 2012

Space-age ceramics at their best promise advanced jet and gas turbine engines that burn with greater fuel efficiencies and less pollution. Berkeley Lab scientists have developed the first mechanical test rig for obtaining real-time X-ray computed microtomography images at ultrahigh temperatures for improving the composition and architecture of advanced ceramic composites.


Another Advance on the Road to Spintronics

October 15, 2012

Using a new technique called HARPES, for Hard x-ray Angle-Resolved PhotoEmission Spectroscopy, Berkeley Lab researchers have unlocked the ferromagnetic secrets of dilute magnetic semiconductors, materials of great interest for spintronic technology.


New Phenomenon in Nanodisk Magnetic Vortices

August 7, 2012

New findings from a team of Berkeley Lab and Japanese scientists suggest that the road to magnetic vortex RAM might be more difficult to navigate than previously supposed, but there might be unexpected rewards as well. A study at the Advanced Light Source revealed that contrary to suppositions, the formation of magnetic vortices in ferromagnetic nanodisks is an asymmetric phenomenon.


A U.S. Department of Energy National Laboratory Operated by the University of California
UC logo
Questions & CommentsPrivacy & Security Notice