News Center

Confirmed: Stellar Behemoth Self-Destructs in a Type IIb Supernova

The Palomar 48 inch telescope. (Photo by: Iair Arcavi, Weizmann Instiute of Science)

Wolf-Rayet stars, more than 20 times as massive as the Sun and at least five times as hot, are relatively rare and often obscured. Scientists don’t know much about how they form, live and die.

Unusual Supernova is Doubly Unusual for Being Perfectly Normal

Type Ia supernovae are indispensable milestones for measuring the expansion of the universe. With definitive measures of Supernova 2011fe, the same “Backyard Supernova” that thrilled amateur and professional astronomers alike in the summer of 2011, the Nearby Supernova Factory led by Lawrence Berkeley National Laboratory demonstrates that this unusually close-by Type Ia is such a perfect example of its kind that future Type Ia’s – and models meant to explain their physics – must be measured against it.

The Last Big Bump Before a Supernova Explodes

Last-Bump-icon

The Palomar Transient Factory (PTF) brings together universities, observatories, and one national laboratory to hunt for supernovae and other astronomical objects. At the National Energy Research Scientific Computing Center (NERSC) Berkeley Lab processes and stores the data from PTF’s surveys, which use the Oschin Telescope at Caltech’s Palomar Observatory. On August 25, 2010, PTF’s “autonomous

The Farthest Supernova Yet for Measuring Cosmic History

Supernova SCP-0401, nicknamed “Mingus,” was collected by the Hubble Space Telescope in 2004 but could not be positively identified until after the installation of a new camera that serendipitously acquired more data. (Photo Space Telescope Science Institute)

In 2004 the Supernova Cosmology Project used the Hubble Space Telescope to find a tantalizing supernova that appeared to be almost 10 billion light-years distant. But Berkeley Lab scientists had to wait until a new camera was installed on the Hubble years later before they could confirm the candidate’s identity and redshift as a Type Ia “standard candle.” The spectrum and light curve of supernova SCP-0401 are now known with clarity; it is the supernova furthest back in time that can be used for precise measurements of the expansion history of the universe.

Supernovae of the Same Brightness, Cut From Vastly Different Cosmic Cloth

The supernova PTF 11kx can be seen as the blue dot on the galaxy. The image was taken when the supernova was near maximum brightness by the Faulkes Telescope North. The system is located approximately 600 million light years away in the constellation Lynx. ( BJ Fulton (Las Cumbres Observatory Global Telescope Network. (BJ Fulton, Las Cumbres Observatory Global Telescope Network)

The multi-institutional Palomar Transient Factory (PTF) team presents the first-ever direct observations of a Type 1a supernova progenitor system. Astronomers have collected evidence indicating that the progenitor system of a Type 1a supernova, called PTF 11kx, contains a red giant star. They also show that the system previously underwent at least one much smaller nova eruption before it ended its life in a destructive supernova.

Closest Type Ia Supernova in Decades Solves a Cosmic Mystery

The Palomar Transient Factory caught SN 2011fe in the Pinwheel Galaxy in the vicinity of the Big Dipper on 24 August, 2011. Found just hours after it exploded and only 21 million light years away, the discovery triggered the closest-ever look at a young Type Ia supernova. (Image by B. J. Fulton, Las Cumbres Observatory Global Telescope Network)

Even as the “supernova of a generation” came into view in backyards across the northern hemisphere last August, physicists and astronomers who had caught its earliest moments were developing a surprising and much clearer picture of what happens during a titanic Type Ia explosion. Now they have announced the closest, most detailed look ever at one of the universe’s brightest “standard candles,” the celestial mileposts that led to the discovery of dark energy.

Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics

Saul Perlmutter (Photo Roy Kaltschmidt, Lawrence Berkeley National Laboratory. Click on image for high resolution.)

Saul Perlmutter of Lawrence Berkeley National Laboratory’s Physics Division and the University of California at Berkeley has won the 2011 Nobel Prize in Physics for the discovery of the accelerating expansion of the universe through observations of distant supernovae. Perlmutter, a founder of the Supernova Cosmology Project at Berkeley Lab, shares the prize with Brian Schmidt and Adam Riess, members of the High-z Supernova Search Team who made the same discovery.

Searching for Dark Energy with the Whole World’s Supernova Dataset

One of the six new distant supernovae included in the Supernova Cosmology Project's new Union2 survey, including observations by Japan's Subaru Telescope on Mauna Kea (top) with follow-up observations by the Hubble Space Telescope (bottom).

The Supernova Cosmology Project’s Union2 compilation and reanalysis of decades of the world’s best supernova surveys, with the addition of six high-redshift supernovae, puts new bounds on possible values for the nature of dark energy. Einstein’s cosmological constant comfortably fits the data, but there’s still plenty of room at the top for dynamical theories.

Measuring a Monstrous Supernova

mergingWDs1

Members of the Nearby Supernova Factory based at Berkeley Lab discovered and analyzed a rare Type Ia supernova whose progenitor star had a mass some two and a half times that of our sun – much more mass than a Type Ia progenitor should be able to accumulate before it explodes. The data they gathered is the most complete ever for such an unusual beast; only one model really fits, the merger of two white dwarf stars.

A Superbright Supernova That’s the First of Its Kind

In this schematic illustration of the material ejected from supernova 2009bi, the radioactive nickel core (white) decays to cobalt, emitting gamma rays and positrons that excite the surrounding material (textured yellow), which is rich in heavy elemements such as iron, causing it to glow. The outer layers (dark shadow) consist of light elements that remain unilluminated.

A superbright supernova found in a dwarf galaxy by the Nearby Supernova Factory based at Berkeley Lab is the first confirmed example of a pair-instability supernova, the result of the partial core collapse and thermonuclear detonation of an enormously massive star, like the earliest stars in the Universe.