News Center

Life-Saving Dividends for Synthetic Biology Research: Microbial-Based Antimalarial Drug Shipped to Africa

Jay Keasling with children in a village outside Nairobi, Kenya. (Photo by Gabrielle Tenenbaum)

A synthetic biology project begun 13 years ago by Jay Keasling was culminated with the announcement that a microbial-based version of the antimalarial drug artemisinin has been shipped to African nations where it is most needed.

Berkeley Lab’s Jennifer Doudna Gives a CRISPR Interview on NPR

Doudna photo

Jennifer Doudna, a biochemist with Berkeley Lab’s Physical Biosciences Division, was recently interviewed on National Public Radio by Joe Palca for a segment on All Things Considered. The topic was CRISPR, an important new tool for genetic engineering.

The JBEI GT Collection: A New Resource for Advanced Biofuels Research

The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, features GT clones of rice (shown here) and Arabidopsis plants. (Photo by Roy Kaltschmidt)

The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, is expected to drive basic scientific understanding of GTs and better enable the manipulation of plant cell walls for the production of biofuels and other chemical products.

Berkeley Lab’s Adam Arkin Wins 2013 Lawrence Award

Adam Arkin, director of Berkeley Lab’s Physical Biosciences Division, has been named one of six recipients of the 2013 Ernest Orlando Lawrence Award by U.S. Energy Secretary Ernest Moniz.

What About BOB?

The Berkeley Open Biofoundry – BOB – is a Berkeley Lab proposal to DARPA aimed at providing the science and technology that will enable the engineering of biological systems to produce valuable chemical products on a commercial scale.

Resistance is Not Futile: Joint BioEnergy Institute Researchers Engineer Resistance to Ionic Liquids in Biofuel Microbes

Researchers with the Joint BioEnergy Institute (JBEI) have identified the genetic origins of a microbial resistance to ionic liquids and successfully introduced this resistance into a strain of E. coli bacteria for the production of advanced biofuels.

New Technique for Identifying Gene-Enhancers

Berkeley Lab researchers led the development of a new technique for identifying gene enhancers – sequences of DNA that act to amplify the expression of a specific gene – in the genomes of humans and other mammals. Called SIF-seq, this new technique complements existing genomic tools, such as ChIP-seq, and offers additional benefits.

New Insight into an Emerging Genome-Editing Tool

A collaboration led by Berkeley Lab’s Jennifer Doudna and Eva Nogales has produced the first detailed look at the 3D structure of the Cas9 enzyme and how it partners with guide RNA to interact with target DNA. The results should enhance Cas9’s value and versatility as a genome-editing tool.

Puzzling Question in Bacterial Immune System Answered

Berkeley researchers have answered a central question about Cas9, an enzyme that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering: How is Cas9 able to precisely discriminate between non-self DNA that must be degraded and self DNA that may be almost identical within genomes that are millions to billions of base pairs long.

Less Toxic Metabolites, More Chemical Product

By preventing the build-up of toxic metabolites in engineered microbes, a dynamic regulatory system developed at JBEI can help boost production of an advanced biofuel, a therapeutic drug, or other valuable chemical products. The system has already been used to double the production in E. coli of amorphadiene, a precursor to the premier antimalarial drug artemisinin.