

The Future of the Earth's Climate: Frontiers in Forecasting

Bill Collins LBL and UC Berkeley Berkeley, California

Key climate questions

- How has the physical climate changed in the recent past?
- How has the energy budget of the planet changed?
- Are recent changes natural or human-induced?
- What are the possible futures of the Earth's climate?
- What are the key uncertainties in impacts and mitigation?

Grinnell Glacier, Montana, 1938

Grinnell Glacier, Montana, 2005

.....

REBRELEY

- Earth has warmed by 0.76 ± 0.19 K since 1850.
- Measurement artifacts do not affect global trends.

• Troposphere is warming by 0.16K to 0.18K per decade.

• Tropospheric humidity is increasing by 1.2%/decade.

Climatic context of warming

rrrr

• It is very likely that last 50 years are warmest in last 500 years.

Reductions in Arctic sea ice

rrrr

• Mass loss from glaciers since 1991 is 0.77<u>+</u>0.22 mm/year SLE.

• This accounts for approximately 1/4 of the observed sea-level rise.

The energy budget of the Earth

Energy budget of Earth's climate

Kiehl and Trenberth 1997

• Imbalance in Earth's energy budget drives climate change.

• Changes in greenhouse effect or albedo can cause imbalance.

• Concentrations of greenhouse gases are highest in 650K years.

Definition of radiative forcing

Radiative forcing is an "externally imposed perturbation in the radiative energy budget of the Earth's climate system." (IPCC TAR)

.....

BERKELEY LAE

IPCC AR4, 2007

Concentrations of O₂ and fractions of ¹³C are decreasing.
These decreases are most consistent with fossil fuel origin.

Models of aerosol radiative forcing

.....

IPCC	AR4,	2007
------	------	------

Species	Forcing (W m ⁻²)
Sulfate	-0.4 ± 0.2
Fossil fuel organic carbon	–0.1 ± 0.1
fossil-fuel black carbon	+0.2 ± 0.1
Biomass burning	0.0 ± 0.1
Nitrate	–0.1 ± 0.1
mineral dust	-0.1 ± 0.2
Total	-0.5 ± 0.4

The Sun: a natural forcing agent

Volcanoes: intermittent forcing agents

Historical radiative forcing

.....

BERKELEY

111

Radiative forcing of climate between 1750 and 2005

- Probability that historical forcing > 0 is very likely (90%+).
- However, confidence in short-lived agents is still low at best.

Volcanic eruptions

Solar variability

Human Pollution

CCSM3 Model: http://www.ccsm.ucar.edu

Attribution of past climate change

.....

• Models with only natural forcings do not match observations.

• It is very likely (>90%) humans are cause of recent warming.

IPCC AR4, 2007

• Global temperatures could increase by 1.7 to 3.2K.

Projection of regional temperatures

• Uncertainties at 2100 are from physics and emissions.

Ш

BERKELEY

Further reductions in Arctic sea ice

.....

BERKELEY

Π

Increased sea level and glacial melt

BERKELEY L

Climate extremes in physical climate

Heat wave duration: 5 days > 5K

CMIP3 multi-model

Precipitation fraction > 95th percentile

BERKELEY LA

CMIP3 multi-model

Consecutive dry days: rain < 1 mm

BERKELEY LAB

60W

dry days [days]

CMIP3 multi-model

120W

90W

CMIP3 multi-model dry days [days] B1 80N 00 60N 40N 150W 120W 60W 90W 6 -10 -8 -6 -4 -2 Q 2 4 8 10

A1B

80N

60N

40N

150W

-10 -8 -6 -4 -2 0 2 4 6 8 10

Future research in science, impacts, and adaptation

Sea level rise in Washington from:

- 38 cm sea-level rise
- Category II hurricane

- In the past, we have generally used offline models to predict concentrations and read these into models.
- This approach is simple to implement, but
 - It cuts the feedback loops.
 - It eliminates the chemical reservoirs.
- The next generation of models will include these interactions.

Hansen and Sato, 2001

BERKELEY NATIONAL LABORATORY

Time scales for climate projection

IPCC TAR, 2001

.....

• Traditional assessments treat centennial time scales for composition and climate response.

• The time scales relevant for adaptation of infrastructure and agrisystems are decadal.

Projections for Global Surface

.....

BERKELEY

Meehl et al, 2005

• Between 50 to 70% of warming in 2050 relative to pre-industrial periods Is "committed".

• Therefore the short-range predictions are relatively insensitive to socioeconomic scenarios.

Transient Climate Response and Equilibrated Climate Sensitivity

Figure 9.20: Comparison of CMIP2 model results for 20-year average
values centred on year 70, the time of CO2 doubling. Values are shown
for the effective climate sensitivity, the net heat flux across the ocean
surface multiplied by the ocean fraction and the global mean tempera-
ture change (TCR).IPCC TAR, 2001

• The range of transient response is 3X smaller than the equilibrated sensitivity.

• Therefore the multi-model set of short-term predictions should be more consistent.

Conclusions - Scientific Objectives

- How do natural and anthropogenic factors influence past, present, and future climate?
- How does the hydrological and ecological cycles respond to these influences?
- How will natural systems amplify or reduce human influences on climate?
- What are optimal (and sub-optimal) methods for adapting to and mitigating climate change?