Multicore: Fallout of a Hardware Revolution

Katherine Yelick, NERSC Division Director and a cast of thousands from
U.C. Berkeley and Lawrence Berkeley National Laboratory

What has changed (and

 what has not)
Old \& New: Moore's Law is Alive and Well

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra

Sea Change in Chip Design

- Intel 4004 (1971): 4-bit processor, 2312 transistors, 0.4 MHz , 10 micron PMOS, $11 \mathrm{~mm}^{2}$ chip
- RISC II (1983): 32-bit, 5 stage pipeline, 40,760 transistors, 3 MHz , 3 micron NMOS, $60 \mathrm{~mm}^{2}$ chip
- $125 \mathrm{~mm}^{2}$ chip, 0.065 micron CMOS = 2312 RISC II+FPU+Icache+Dcache
\square RISC II shrinks to $\approx 0.02 \mathrm{~mm}^{2}$ at 65 nm

\square Caches via DRAM or 1 transistor SRAM or 3D chip stacking
\square Proximity Communication via capacitive coupling at $>1 \mathrm{~TB} / \mathrm{s}$? (Ivan Sutherland @ Sun / Berkeley)
- Processor is the new transistor!

New: Power Wall Can put more transistors on a chip than can afford to turn on

Why Parallelism Lowers Power

- Highly concurrent systems are more power efficient
\square Dynamic power is proportional to $V^{2} f C$
\square Increasing frequency (f) also increases supply voltage (V): more than linear effect
\square Increasing cores increases capacitance (C) but has only a linear effect
- Hidden concurrency burns power
\square Speculation, dynamic dependence checking, etc.
\square Push parallelism discovery to software (compilers and application programmers) to save power
- Challenge: Can you double the concurrency in your algorithms every 2 years?

Old: Clock speed double every 2 years

New: Cores/chip will double every 2 years

Old: Parallelism only for High End Computing

Address af http://www.paralogos.com/DeadSuper,index.titml

The Dead Supercomputer Society

The Passing of a Golden Age?

From the construction of the first programmed computers until the mid 1990s, there was always room in the computer industry for someone with a clever, if sometimes challenging, idea on how to make a more powerful machine. Computing became strategic during the Second World War, and remained so during the Cold War that followed. High-performance computing is essential to any modern nuclear weapons program, and a computer terhnolnov "rare" was a looiral corollary to the arme rare While nowerfil romnutere are of oreat value to a mumber

New: Parallelism by Necessity

"This shift toward increasing parallelism is not a triumphant stride forward based on breakthroughs in novel software and architectures for parallelism; instead, this plunge into parallelism is actually a retreat from even greater challenges that thwart efficient silicon implementation of traditional uniprocessor architectures."

Kurt Keutzer, Berkeley View, December 2006

- HW/SW Industry bet its future that breakthroughs will appear before its too late

Bell's Evolution Of Computer Classes

 Technology enables two paths:1. increasing performance, same cost (and form factor)

Bell's Evolution Of Computer Classes Technology enables two

Time

Re-inventing Client/Server

- "The Datacenter is the Computer" \square Building sized computers: Google, MS

- "The Laptop/Handheld is the Computer" $\square 08$: Dell \# laptops > \# desktops?
$\square 1 B$ Cell phones/yr, increasing in function \square Will desktops disappear? Laptops?
- Laptop/Handheld as future client, Datacenter or "cloud" as future server

Very Old: Multiplies Slow, Loads fast

- Design algorithms to reduce floating point operations
- Machines measured on peak flop/s

New: Memory Performance is Key

Ever-growing processor-memory performance gap

- Total chip performance still growing with Moore's Law
- Bandwidth rather than latency will be growing concern

New: Fixed memory capacity will more chips/\$

Evolution of memory density

-1 Mb
-4 Mb
16 Mb
64 Mb
$* 128 \mathrm{Mb}$
-256 Mb
$\square 512 \mathrm{Mb}$
$\Delta 1 \mathrm{~Gb}$
2 Gb
4 Gb

Source: IBM

Old: Moore's Law \rightarrow Clock $2 x$ in 18 months

- VAX : 25\%/year 1978 to 1986
- RISC + x86: 52\%/year 1986 to 2002

New: Cores per chip will double instead

- Chip density is continuing increase ~2x every 2 years
\square Clock speed is not
\square Number of processor cores may double instead
- There is little or no hidden parallelism (ILP) to be found
- Parallelism must be exposed to and managed by software

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

New: Energy budgets could soon dominate facility costs

Estimated 20-200 MWatts for exascale ($10^{18} \mathrm{ops} / \mathrm{sec}$) systems in 2018

Source: Luiz André Barroso, (Google) "The Price of Performance," ACM Queue, Vol. 2, No. 7, pp. 48-53, September 2005. (Modified with permission.)

Summary of Trends

- Power is dominant concern for future systems
- Primary "knob" to reduce power is lower clock rates an increase parallelism
- The memory wall (latency and bandwidth) will continue to get worse
- Memory capacity will be increasingly limited/costly
- Entire spectrum of computing will need to address parallelism => performance is a software problem
\square Handheld devices: to keep battery power
\square Laptops/desktops: each new "feature" requires saving time elsewhere
\square High end computing facilities and data centers: to reduce energy costs
- DOE is no long alone in dealing with parallelism

Parallel Revolution May Fail

- The industry is betting on parallelism:
"Jobs said Apple would focus principally on technology for the next generation of the industry's increasingly parallel computer processors." NYTimes, 6/10/08.
- Close to 100% failure rate of Parallel Computer Companies
\square Convex, Encore, Inmos (Transputer), MasPar, NCUBE, Kendall
Square Research, Sequent, (Silicon Graphics), Thinking Machines, ...
- What if IT goes from a growth industry to a replacement industry?
\square If SW can't effectively use
32, 64, ... cores per chip
\Rightarrow SW no faster on new computer
\Rightarrow Only buy if computer wears out

Multicore in High Performance Computing

Applications of Exascale

- Scientists will always find ways of using the largest computational systems
- Some applications highlighted in the 2008 Exascale report:
\square Climate modeling
\square Energy systems modeling with economics
\square Biological system model
- Can we leverage mainstream?
\square Hardware, e.g., embedded systems
\square Software solutions

Modeling and
Simulation at the
Exascale for Energy and the

ParLab Project

funded by Microsoft, Intel and UC Discovery

Krste Asanovic, Ras Bodik, J im Demmel, J ohn Kubiatowicz, Kurt Keutzer, Edward Lee, George Necula, Dave Patterson, Koushik Sen, J ohn Shalf, J ohn Wawrzynek, and Kathy Yelick

Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore
 Motifs/Dwarfs

$\begin{aligned} & \text { productivity } \\ & \text { layer } \end{aligned}$Layer	Composition \& Coordination Language (C\&CL)		Static Verification
	C\&CL Compiler/Interpreter		
	Parallel Libraries	Parallel Frameworks	Type Systems
	Efficiency Languages		Directed Testing
Layer	\begin{tabular}{c\|c	}	
\hline			
\end{tabular} Legacy Code\quad Schedulers	 Synch. Primitives	Dynamic Checking	
	Efficiency Langu	uage Compilers	
O^{5}	Legacy OS	OS Libraries \& Services	with Replay
Arch.	Multicore/GPGPU	RAMP Manycore	

Applications: What are the problems?

"Who needs 100 cores to run M/S Word?"
$\square \quad$ Need compelling apps that use 100 s of cores
How did we pick applications?

1. Enthusiastic expert application partner, leader in field, promise to help design, use, evaluate our technology
2. Compelling in terms of likely market or social impact, with short term feasibility and longer term potential
3. Requires significant speed-up, or a smaller, more efficient platform to work as intended
4. As a whole, applications cover the most important
$\square \quad$ Platforms (handheld, laptop, games)
$\square \quad$ Markets (consumer, business, health)

Compelling Laptop/Handheld Apps (David Wessel)

- Musicians have an insatiable appetite for computation

More channels, instruments, more processing, more interaction!
$\square \quad$ Latency must be low (5 ms)
$\square \quad$ Must be reliable (No clicks)

- Music Enhancer

Enhanced sound delivery systems for home sound systems using large microphone and speaker arrays
$\square \quad$ Laptop/Handheld recreate 3D sound over ear buds

- Hearing Augmenter

Handheld as accelerator for hearing aid

- Novel Instrument User Interface
$\square \quad$ New composition and performance systems beyond keyboards
$\square \quad$ Input device for Laptop/Handheld

Berkeley Center for New Music and Audio Technology (CNMAT) created a compact loudspeaker array: 10-inch-diameter icosahedron incorporating 120 tweeters.

Content-Based Image Retrieval (Kurt Keutzer)

Coronary Artery Disease

(Tony Keaveny)

- Modeling to help patient compliance?
- 450k deaths/year, 16M w. symptom, 72M \uparrow BP
- Massively parallel, Real-time variations
- CFD FE solid (non-linear), fluid (Newtonian), pulsatile
- Blood pressure, activity, habitus, cholesterol

Meeting Diarist and Teleconference Aid

 (Nelson Morgan)- Meeting Diarist
\square Laptops/ Handhelds at meeting coordinate to create speaker identified, partially transcribed text diary of meeting

- Teleconference speaker identifier
- L/Hs used for teleconference, identifies who is speaking, "closed caption" hint of what being said

Parallel Browser: Web 2.0 in 2 Watts (Ras Bodik)

- Why parallelizing a browser:
\square 1) Web 2.0: Browser plays role of traditional OS
Resource sharing and allocation, Protection
\square 2) Will handheld replace laptop?
Enabled by 4G networks, better output devices
- Bottlenecks: Parsing, Rendering, Scripting

machine

seconds
a modern desktop (2Mbps network)2
T40 1.6GHz (a very old laptop; 2Mbps network) 7
T40 1.6Ghz (laptop in battery mode, 2Mbps) 13
iPhone 600MHz (2Mbps network) 37
iPhone 600MHz (1Mbps network) 40

- "SkipJax"
\square Parallel replacement for JavaScript/AJAX

Developing Parallel Software

- 2 types of programmers $\Rightarrow 2$ layers
- Efficiency Layer (10% of today's programmers)
\square Expert programmers build Frameworks \& Libraries, Hypervisors, ...
\square "Bare metal" efficiency possible at Efficiency Layer
- Productivity Layer (90% of today's programmers)
\square Domain experts / Naïve programmers productively build parallel apps using frameworks \& libraries
\square Frameworks \& libraries composed to form app frameworks
- Identify set of key computational methods
\square Language for interdisciplinary project; focus for programming and architecture work

Motif/Dwarf: Common Computational Methods

 (Red Hot \rightarrow Blue Cool)

Productivity Language Strategy

- Application-driven: Domain-specific languages
\square Ensure usefulness for at least one application
- Music language
- Image framework
- Browser language
- Health application language
- Bottom-up implementation strategy
\square Ensure efficiently implementable
\square "Grow" a language from one that is efficient but not productive by abstraction levels
- Identify common features across domains
\square Cross-language meetings/discussions

Autotuning: $21^{\text {st }}$ Century Code Generation

- Problem: generating optimal code is like searching for needle in a haystack
- Manycore \Rightarrow even more diverse
- New approach: "Auto-tuners"
\square 1st generate program variations of combinations of optimizations (prefetching, ...) and data structures
\square Then compile and run to search for best code for that computer
- Examples: PHiPAC (Dense LA), Atlas (Dense LA), Spiral (DSP), FFTW (FFT), OSKI (Sparse LA), Stencils (Convolutions, etc.)
\square Change data structures
\square Rely on high level properties
\square Write programs to generate code

Deconstructing Operating Systems (Krste Asanovic, John Kubiatowicz)

- Resurgence of interest in virtual machines
\square Hypervisor: thin SW layer btw guest OS and HW
- Future OS: libraries where only functions needed are linked into app, on top of thin hypervisor providing protection and sharing of resources
\square Opportunity for OS innovation
- Very thin hypervisors, and to allow software full access to hardware within partition

Build Academic Manycore from FPGAs RAMP

 (Krste Asanovic, John Wawrzynek)- As ≈ 10 CPUs will fit in Field Programmable Gate Array (FPGA), 1000-CPU system from ≈ 100 FPGAs?

8 32-bit simple "soft core" RISC at 100MHz in 2004 (Virtex-II)

- HW research community does logic design ("gate shareware") to create out-of-the-box, Manycore
\square E.g., 1000 processor, standard ISA binary-compatible, 64-bit, cache-coherent supercomputer $@ \approx 150 \mathrm{MHz} / \mathrm{CPU}$ in 2007
\square RAMPants: 10 faculty at Berkeley, CMU, MIT, Stanford, Texas, and Washington
- RAMP: Research Accelerator for Multiple Processors

Radical Co-Location: Part 1 \& 2

Par Lab Opening Ceremony Mon. Dec. 1, 2008 11-2

Questions?

