News Center

LaserNetUS High-Power Laser Consortium, Including Berkeley Lab, Receives $18M From the U.S. DOE

New U.S. Department of Energy funding totaling $18 million, including $1 million for user support, will be distributed among 10 partner institutions – including Berkeley Lab – and will continue and expand LaserNetUS operations for three years.

3 Awards Will Support Accelerator R&D for Medical Treatment, Miniaturization, and Machine Learning

U.S. Department of Energy awards announced in July will advance Lawrence Berkeley National Laboratory (Berkeley Lab) R&D to develop a more effective and compact particle-beam system for cancer treatment, improve particle-beam performance using artificial intelligence, and develop a high-power, rapid-fire laser system for both tabletop and large-scale applications.

SLAC’s Upgraded X-Ray Laser Facility Produces First Light

Today, the hard X-ray system for LCLS-II achieved “first light,” demonstrating its performance in readiness for the experimental campaigns ahead. Berkeley Lab oversaw the construction and delivery of the powerful magnetic components, called undulator segments, for the hard X-ray system.

Berkeley Lab Researchers Receive DOE Early Career Research Awards

Three scientists at Berkeley Lab have been selected by the U.S. Department of Energy’s Office of Science to receive significant funding for research through its Early Career Research Program (ECRP). In addition, three faculty scientists with joint appointments at Berkeley Lab and UC Berkeley will receive ECRP funding through their UC Berkeley affiliations.

Some Lab Magnet Work Proceeds on Particle Accelerator Upgrade

While COVID-19 risks had led to a temporary halt in fabrication work on high-power superconducting magnets built by a collaboration of three U.S. Department of Energy national labs for an upgrade of the world’s largest particle collider at CERN in Europe, researchers at Berkeley Lab are still carrying out some project tasks.

3 National Labs Achieve Record Magnetic Field for Accelerator Focusing Magnet

In a multiyear effort involving three U.S. national laboratories, researchers have successfully built and tested a powerful new focusing magnet that represents a new use for niobium-tin, a superconducting material. The eight-ton device – about as long as a semitruck trailer – set a record for the highest field strength ever recorded for an accelerator focusing magnet, and raises the standard for magnets operating in high-energy particle colliders.

A Breakthrough on the Next Big Step to Building the World’s Most Powerful Particle Accelerator

The international Muon Ionization Cooling Experiment (MICE) collaboration, a U.K.-based effort that includes researchers at Berkeley Lab, has made a major step forward in the quest to create an accelerator for subatomic particles called muons.

Milestone in Advanced Light Source Upgrade Project Will Bring in a New Ring

An upgrade of the Advanced Light Source (ALS), a synchrotron at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), has passed an important milestone that will help to maintain the ALS’ world-leading capabilities. On Dec. 23 the DOE granted approval for a key funding step that will allow the project to start construction on a new inner electron storage ring known as an accumulator ring.

Machine Learning Enhances Light-Beam Performance at the Advanced Light Source

A team of researchers at Berkeley Lab and UC Berkeley has successfully demonstrated how machine-learning tools can improve the stability of light beams’ size for science experiments at a synchrotron light source via adjustments that largely cancel out unwanted fluctuations.

VIDEO: Particle Accelerators Drive Decades of Discoveries at Berkeley Lab and Beyond

This video and accompanying article highlight the decades of discoveries, achievements and progress in particle accelerator R&D at Berkeley Lab. These accelerators have enabled new explorations of the atomic nucleus; the production and discovery of new elements and isotopes, and of subatomic particles and their properties; created new types of medical imaging and treatments; and provided new insight into the nature of matter and energy, and new methods to advance industry and security, among other wide-ranging applications.