News Center

There’s a New Microscope in Town: ThemIS, anyone?

Researchers at the Berkeley Lab now have access to a unique new microscope that combines atomic-scale imaging capabilities with the ability to observe real-world sample properties and behavior in real time.

Dozens of Photographers Attend Berkeley Lab’s Physics Photowalk

VIDEO: A recap of the Berkeley Lab Physics Photowalk. (Credit: Marilyn Chung/Berkeley Lab)   Dozens of photographers visited the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) on Wednesday, May 16 – coinciding with the International Day of Light – to creatively capture scenes of science at Lab facilities including the Advanced Light Source,

In Pursuit of Perfect Chemistry: A Vision for Unifying Catalysis

Several fields of research have sprung up around the chemical drivers, called catalysts, at work in many industrial processes – including those that boost the production of fuels, fertilizers, and foods – and there is a growing interest in coordinating these research activities to create new, hybrid catalysts with enhanced performance, say researchers at Berkeley Lab and UC Berkeley.

Mapping Battery Materials With Atomic Precision

An international team led by researchers at Berkeley Lab used advanced techniques in electron microscopy to show how the ratio of materials that make up a lithium-ion battery electrode affects its structure at the atomic level, and how the surface is very different from the rest of the material.

Scientists Confirm Century-Old Speculation on the Chemistry of a High-Performance Battery

Scientists have discovered a novel chemical state, first proposed about 90 years ago, that enables a high-performance, low-cost sodium-ion battery. The battery could quickly and efficiently store and distribute energy produced by solar panels and wind turbines across the electrical grid.

Coupling Experiments to Theory to Build a Better Battery

A Berkeley Lab-led team of researchers has reported that a new lithium-sulfur battery component allows a doubling in capacity compared to a conventional lithium-sulfur battery, even after more than 100 charge cycles.