News Center

Berkeley Lab Celebrates the Integrative Genomics Building

Marking a step forward in Berkeley Lab’s vision to expand the footprint of the biological and environmental sciences, the Integrative Genomics Building (IGB) was dedicated during a two-hour ceremony that culminated in the cutting of a double helix ribbon representing DNA. By uniting leading experts and world-class technologies under one roof, the IGB will help transform plant and microbial genomics research into solutions for today’s most pressing environmental and energy issues.

Separation Anxiety No More: A Faster Technique to Purify Elements

Researchers at Lawrence Berkeley National Laboratory have developed a new chemical separation method that is vastly more efficient than conventional processes, opening the door to faster discovery of new elements, easier nuclear fuel reprocessing, and, most tantalizing, a better way to attain actinium-225, a promising therapeutic isotope for cancer treatment.

Breakthrough Technique for Studying Gene Expression Takes Root in Plants

An open-source RNA analysis platform has been successfully used on plant cells for the first time – a breakthrough that could herald a new era of fundamental research and bolster efforts to engineer more efficient food and biofuel crop plants. The technology, called Drop-seq, is a method for measuring the RNA present in individual cells, allowing scientists to see what genes are being expressed and how this relates to the specific functions of different cell types.

Berkeley Lab Team Uses Deep Learning to Help Veterans Administration Address Suicide Risks

Researchers in Berkeley Lab’s Computational Research Division are applying deep learning and analytics to electronic health record (EHR) data to help the Veterans Administration address a host of medical and psychological challenges affecting many of the nation’s 700,000 military veterans.

Mouse Study Yields Long-Awaited Insights into Human Stomach Cancer

Mice have been instrumental in the study of cancer, but like all animal models of human diseases, they have their limitations. For stomach cancer in particular, mice have historically been regarded as quite poor research organisms because rodents rarely develop spontaneous stomach tumors. But results from a new study are about to shake up the paradigm.

Pioneering Cancer Researcher Mina Bissell Receives Two Top Honors

Mina Bissell, a distinguished scientist at the Berkeley Lab, has been selected to receive two prestigious awards for her pioneering contributions to breast cancer biology and medicine.

Bright Skies for Plant-Based Jet Fuels

With an estimated daily fuel demand of more than 5 million barrels per day, the global aviation sector is incredibly energy-intensive and almost entirely reliant on petroleum-based fuels. But a new analysis by Berkeley Lab shows that sustainable plant-based bio-jet fuels could be competitive with conventional fuels if current development and scale-up initiatives continue to push ahead successfully.

Uncovering Uncultivated Microbes in the Human Gut

A human’s health is shaped both by environmental factors and the body’s interactions with the microbiome, particularly in the gut. Genome sequences are critical for characterizing individual microbes and understanding their functional roles. However, previous studies have estimated that only 50 percent of species in the gut microbiome have a sequenced genome, in part because many species have not yet been cultivated for study.

Nature’s Own Biorefinery

New research from Berkeley Lab shows how an insect common to the Eastern U.S., the long-horned passalid beetle, has a hardy digestive tract with microbes to thank for turning its woody diet into energy, food for its young, and nutrients for forest growth. These insights into how the beetle and its distinct microbiome have co-evolved provide a roadmap for the production of affordable, nature-derived fuels and bioproducts.

Potential New Way to Boost Biofuels and Bioproducts Production

Researchers at the Department of Energy’s Joint BioEnergy Institute (JBEI) have gained insight into the primary process by which all cells harness energy, known as cellular respiration, of E. coli bacteria and a species of yeast, each of which are common hosts for biofuels and bioproducts. Their findings suggest new ways by which the pathways