News Center

Royal Society of London Elects Two Berkeley Lab Scientists

Two Berkeley Lab scientists – climate scientist Inez Fung of the Earth and Environmental Sciences Area, and chemist Martin Head-Gordon of the Energy Sciences Area – have been elected to the Royal Society of London, the oldest scientific academic society in continuous existence.

Greener Days Ahead for Carbon Fuels

A discovery by researchers at Berkeley Lab and the Joint Center for Artificial Photosynthesis shows that recycling carbon dioxide into valuable chemicals and fuels can be economical and efficient – all through a single copper catalyst.

A Solar Cell That Does Double Duty for Renewable Energy

Researchers at the Department of Energy’s Lawrence Berkeley National Laboratory and the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, have developed an artificial photosynthesis device called a “hybrid photoelectrochemical and voltaic (HPEV) cell” that turns sunlight and water into two types of energy – hydrogen fuel and electricity.

Splitting Water: Nanoscale Imaging Yields Key Insights

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel – just as plants do – researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Berkeley Lab have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material’s macroscopic performance.

Solar-to-Fuel System Recycles CO2 to Make Ethanol and Ethylene

In a big step toward sun-powered fuel production, scientists at Berkeley Lab have used artificial photosynthesis to convert carbon dioxide into hydrocarbons at efficiencies greater than plants. The achievement marks a significant advance in the effort to move toward sustainable sources of fuel.

Scientists Developing Innovative Techniques for High-Resolution Analysis of Hybrid Materials

Berkeley Lab researchers have developed a new method of analyzing the molecular-scale structure of organo-lead halide perovskites, a promising class of materials that could energize the solar cell industry. They combined advanced X-ray spectroscopy measurements with calculations based on fundamental, “first principles” theory to obtain an atomic-scale view of the material.

New Materials Could Turn Water into the Fuel of the Future

Scientists at Berkeley Lab and Caltech have—in just two years—nearly doubled the number of materials known to have potential for use in solar fuels. They did so by developing a process that promises to speed the discovery of commercially viable generation of solar fuels that could replace coal, oil, and other fossil fuels.

Solar Cells Get Boost with Integration of Water-Splitting Catalyst onto Semiconductor

Berkeley Lab scientists have found a way to engineer the atomic-scale chemical properties of a water-splitting catalyst for integration with a solar cell, and the result is a big boost to the stability and efficiency of artificial photosynthesis. The research comes out of the Joint Center for Artificial Photosynthesis (JCAP), established to develop a cost-effective method of turning sunlight, water, and carbon dioxide into fuel.

Simplifying Solar Cells with a New Mix of Materials

Scientists have simplified the steps to create highly efficient silicon solar cells by applying a new mix of materials to a standard design. The special blend of materials eliminates the need for a process known as doping that steers the device’s properties by introducing foreign atoms. Doping can also degrade performance.

Some Like it Hot: Simulating Single Particle Excitations

Understanding and manipulating plasmons is important for their potential use in photovoltaics, solar cell water splitting, and sunlight-induced fuel production from CO2. Berkeley Lab researchers have used a real-time numerical algorithm to study both the plasmon and hot carrier within the same framework. That is critical for understanding how long a particle stays excited, and whether there is energy backflow from hot carrier to plasmon.