Skip to main content
Image - In this illustration, the grid in the background represents the computational lattice that theoretical physicists used to calculate a particle property known as nucleon axial coupling. This property determines how a W boson (white wavy line) interacts with one of the quarks in a neutron (large transparent sphere in foreground), emitting an electron (large arrow) and antineutrino (dotted arrow) in a process called beta decay. This process transforms the neutron into a proton (distant transparent sphere). (Credit: Evan Berkowitz/Jülich Research Center, Lawrence Livermore National Laboratory) Image - Stacks of lead bricks (gray) and a copper chamber make up the innermost layers of the MAJORANA DEMONSTRATOR's multilayered shield. The shielding materials weigh about 57 tons. (Credit: Matthew Kapust/Sanford Underground Research Facility) Image - The colored lines represent calculated particle tracks from particle collisions occurring within Brookhaven National Laboratory’s STAR detector at the Relativistic Heavy Ion Collider, and an illustration of a digital brain. The yellow-red glow at center shows a hydrodynamic simulation of quark-gluon plasma created in particle collisions. (Credit: Berkeley Lab)