News Center

ABPDU Celebrates a Decade of Bio-Innovation

-By Emily Scott Ten years ago, Lawrence Berkeley National Laboratory announced the opening of a brand new, 15,000-square-foot facility full of stainless steel state-of-the-art bioprocessing equipment – what we now know as the Advanced Biofuels and Bioproducts Process Development Unit, or ABPDU, was officially open for business. Funded by the U.S. Department of Energy’s Bioenergy

From Smoky Skies to a Green Horizon: Scientists Convert Fire-Risk Wood into Biofuel

Scientists from Berkeley Lab and Sandia National Laboratories have collaborated to develop a streamlined and efficient process for converting woody plant matter like forest overgrowth and agricultural waste – material that is currently burned either intentionally or unintentionally – into liquid biofuel.

The Green Secrets of Goat Poop

Converting the tough fibers and complex sugars in plants into biofuels and other products could be humanity’s ticket to smarter materials, better medicines, and a petroleum-free, sustainable future. Hoping to discover new and improved ways of processing plant material for industrial purposes, scientists like Michelle O’Malley at UC Santa Barbara and the Joint BioEnergy Institute have been studying the gut microbiomes of the planet’s most prolific herbivores: ruminant animals such as goats.

The Secret to Renewable Solar Fuels Is an Off-and-On Again Relationship

Copper that was once bound with oxygen is better at converting CO2 into renewable fuels than copper that was never bound to oxygen, according to Berkeley Lab and Caltech scientists. They say it’s better to have had something special and lost it than to have never had it at all – who would have thought that holds true for metal oxides within solar fuel catalysts?

Nature-Inspired Green Energy Technology Clears Major Development Hurdle

A new material design has put the long-sought idea of artificial photosynthesis within reach.

Scientists Find a Molecular Switch for Better Biofuels

Adapted from an original release published by Lawrence Livermore National Laboratory. Read the full story here  Plant cell walls contain a renewable, nearly-limitless supply of sugar that can be used as a carbon source for microbe-based chemical and biofuel production. However, retrieving these sugars isn’t all that easy. Imidazolium ionic liquid (IIL) solvents are some

Bright Skies for Plant-Based Jet Fuels

With an estimated daily fuel demand of more than 5 million barrels per day, the global aviation sector is incredibly energy-intensive and almost entirely reliant on petroleum-based fuels. But a new analysis by Berkeley Lab shows that sustainable plant-based bio-jet fuels could be competitive with conventional fuels if current development and scale-up initiatives continue to push ahead successfully.

New Discovery Could Improve Organic Solar Cell Performance

Scientists who are members of a new energy materials-related science center based at Berkeley Lab have solved a mystery that could lead to gains in efficiency for organic solar cells.

Fuel Cell X-Ray Study Details Effects of Temperature and Moisture on Performance

To find the right balance of moisture and temperature in a specialized type of hydrogen fuel cell, Berkeley Lab scientists have used X-rays to explore the inner workings of its components at tiny scales.

Made from Solar Concentrate

A team of scientists with Berkeley Lab and the University of Illinois created solar cells that collect higher energy photons at 30 times the concentration of conventional solar cells, the highest luminescent concentration factor ever recorded.