News Center

Data Centers Continue to Proliferate While Their Energy Use Plateaus

United States Data Center Energy Usage Report authors (from left) Dale Sartor, Richard Brown, Arman Shehabi, Sarah Smith. Energy Technologies Area. 06/172016

As the number of data centers continues to increase in the United States, the good news is that they are becoming much more energy efficient. A new report from the Lawrence Berkeley National Laboratory has found that electricity consumption by data centers nationwide, after rising rapidly for more than a decade, started to plateau in 2010 and has remained steady since, at just under 2 percent of total U.S. electricity consumption.

New Mathematics Accurately Captures Liquids and Surfaces Moving in Synergy

A new mathematical framework developed at Berkeley Lab allows researchers to capture fluid dynamics coupled to interface motion at unprecedented detail.

Berkeley Lab researchers in the Computing Sciences Division have developed a new mathematical framework that allows researchers to capture fluid dynamics at unprecedented detail. The work could be used in a range of applications, like optimizing the shape of a propeller blade and the ejection of ink droplets in printers.

A New Spin on Quantum Computing: Scientists Train Electrons with Microwaves

Photo: Researchers at Berkeley Lab's NCDX-II accelerator.

In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave “tuning fork.”

Energy Secretary Honors Berkeley Lab Scientists

Bill Johnston (left) and Bill Collins

Energy Secretary Ernest Moniz has awarded Berkeley Lab scientists Bill Collins and Greg Bell with DOE Secretarial Honor Awards, which are the department’s highest form of non-monetary employee recognition.

Berkeley Lab Scientists ID New Driver Behind Arctic Warming

ice_small

Scientists have identified a mechanism that could turn out to be a big contributor to warming in the Arctic and melting sea ice. They found that open oceans are much less efficient than sea ice when it comes to emitting in the far-infrared region of the spectrum, a previously unknown phenomenon that is likely contributing to the warming of the polar climate.

New Project is the ACME of Addressing Climate Change

ACME2

Eight Department of Energy national laboratories, including Berkeley Lab, are combining forces with the National Center for Atmospheric Research and other institutions in a project called Accelerated Climate Modeling for Energy, or ACME, which is designed to accelerate the development and application of fully coupled, state-of-the-science Earth system models for scientific and energy applications.

Berkeley Lab Wins Three 2014 R&D 100 Awards

biosig

Berkeley Lab has won three 2014 R&D 100 awards. This year’s winners include a fast way to analyze the chemical composition of cells, a suite of genetic tools to improve crops, and a method to screen images of 3-D cell cultures for cancer cells. The technologies could lead to advances in biofuels, food crops, drug development, and biomaterials, and a to better understanding of microbial communities, to name a few potential benefits.

Discovery of New Semiconductor Holds Promise for 2D Physics and Electronics

Researchers at Berkeley Lab’s Molecular Foundry have discovered a unique new two-dimensional semiconductor, rhenium disulfide, that behaves electronically as if it were a 2D monolayer even as a 3D bulk material. This not only opens the door to 2D electronic applications with a 3D material, it also makes it possible to study 2D physics with easy-to-make 3D crystals.

Cooling Microprocessors with Carbon Nanotubes

Berkeley Lab researchers at the Molecular Foundry have developed a “process friendly” technique to enable the cooling of microprocessor chips through the use of carbon nanotubes.

Roots of the Lithium Battery Problem: Berkeley Lab Researchers Find Dendrites Start Below the Surface

Berkeley Lab researchers have discovered that the dendrite problem that can cause lithium-ion batteries to short-circuit, overheat and possibly catch fire originates below the surface of the lithium electrode and not at the surface as has been widely believed.