News Center

For This Metal, Electricity Flows, But Not the Heat

Berkeley scientists have discovered that electrons in vanadium dioxide can conduct electricity without conducting heat, an exotic property in an unconventional material. The characteristic could lead to applications in thermoelectrics and window coatings.

Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe.

New Graphene-Based System Could Help Us ‘See’ Electrical Signaling in Heart and Nerve Cells

Scientists have enlisted the exotic properties of graphene to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields. They hope to enlist the new method to image electrical signaling networks in our hearts and brains.

Scientists Take a Major Leap Toward a ‘Perfect’ Quantum Metamaterial

Scientists have devised a way to build a “quantum metamaterial”—an engineered material with exotic properties not found in nature—using ultracold atoms trapped in an artificial crystal composed of light.

Revealing the Fluctuations of Flexible DNA in 3-D

Scientists have captured the first high-resolution 3-D images from individual double-helix DNA segments attached to gold nanoparticles, which could aid in the use of DNA segments as building blocks for molecular devices that function as nanoscale drug-delivery systems, markers for biological research, and components for electronic devices.

New Form of Electron-beam Imaging Can See Elements that are ‘Invisible’ to Common Methods

A new Berkeley Lab-developed electron-beam imaging technique, tested on samples of nanoscale gold and carbon, greatly improves images of light elements. The technique can reveal structural details for materials that would be overlooked by some traditional methods.

A New Spin on Quantum Computing: Scientists Train Electrons with Microwaves

In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave “tuning fork.”

‘Lasers Rewired’: Scientists Find a New Way to Make Nanowire Lasers

Scientists at Berkeley Lab and UC Berkeley have found a simple new way to produce nanoscale wires that can serve as bright, stable and tunable lasers—an advance toward using light to transmit data.

Scientists Take Key Step Toward Custom-made Nanoscale Chemical Factories

Scientists have for the first time reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. The new design provides an entirely new functionality that greatly expands the potential for these compartments to serve as custom-made chemical factories.

Weaving a New Story for COFS and MOFs

An international collaboration led by Berkeley Lab scientists
has woven the first 3D covalent organic frameworks (COFs) from helical organic threads. The woven COFs display significant advantages in structural flexibility, resiliency and reversibility over previous COFs.