News Center

Bringing Atomic Mapping to the Mainstream

Mapping the internal atomic structure of nanoparticles just got easier thanks to a new computer algorithm and graphical user interface designed by scientists at Berkeley Lab and UCLA.

Scientists Print Nanoscale Imaging Probe onto Tip of Optical Fiber

Combining speed with incredible precision, a team of researchers has developed a way to print a nanoscale imaging probe onto the tip of a glass fiber as thin as a human hair, accelerating the production of the promising new device from several per month to several per day.

Berkeley Lab Scientists Discover New Atomically Layered, Thin Magnet

Berkeley Lab scientists have found an unexpected magnetic property in a 2-D material. The new atomically thin, flat magnet could have major implications for a wide range of applications, such as nanoscale memory, spintronic devices, and magnetic sensors.

Scientists Determine Precise 3-D Location and Identity of All 23,000 Atoms in a Nanoparticle

Scientists used one of the world’s most powerful electron microscopes to map the precise location and chemical type of 23,000 atoms in an extremely small particle made of iron and platinum. Insights gained from the particle’s structure could lead to new ways to improve its magnetic performance for use in high-density, next-generation hard drives.

For This Metal, Electricity Flows, But Not the Heat

Berkeley scientists have discovered that electrons in vanadium dioxide can conduct electricity without conducting heat, an exotic property in an unconventional material. The characteristic could lead to applications in thermoelectrics and window coatings.

Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe.

New Graphene-Based System Could Help Us ‘See’ Electrical Signaling in Heart and Nerve Cells

Scientists have enlisted the exotic properties of graphene to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields. They hope to enlist the new method to image electrical signaling networks in our hearts and brains.

Scientists Take a Major Leap Toward a ‘Perfect’ Quantum Metamaterial

Scientists have devised a way to build a “quantum metamaterial”—an engineered material with exotic properties not found in nature—using ultracold atoms trapped in an artificial crystal composed of light.

Revealing the Fluctuations of Flexible DNA in 3-D

Scientists have captured the first high-resolution 3-D images from individual double-helix DNA segments attached to gold nanoparticles, which could aid in the use of DNA segments as building blocks for molecular devices that function as nanoscale drug-delivery systems, markers for biological research, and components for electronic devices.

New Form of Electron-beam Imaging Can See Elements that are ‘Invisible’ to Common Methods

A new Berkeley Lab-developed electron-beam imaging technique, tested on samples of nanoscale gold and carbon, greatly improves images of light elements. The technique can reveal structural details for materials that would be overlooked by some traditional methods.