News Center

Electric Skyrmions Charge Ahead for Next-Generation Data Storage

A team of researchers led by Berkeley Lab has observed chirality for the first time in polar skyrmions in a material with reversible electrical properties – a combination that could lead to more powerful data storage devices that continue to hold information, even after they’ve been turned off.

When Semiconductors Stick Together, Materials Go Quantum

A simple method developed by a Berkeley Lab-led team could turn ordinary semiconducting materials into quantum machines – superthin devices with extraordinary electronic behavior. Such an advancement could help to revolutionize a number of industries aiming for energy-efficient electronic systems – and provide a platform for exotic new physics.

Berkeley Lab to Build an Advanced Quantum Computing Testbed

The U.S. Department of Energy announced today that Berkeley Lab will receive $30 million over five years to build and operate an Advanced Quantum Testbed. Researchers will use the testbed to explore superconducting quantum processors and evaluate how these emerging quantum devices can be utilized to advance scientific research. As part of this effort, Berkeley Lab will collaborate with MIT Lincoln Laboratory to deploy different quantum processor architectures.

Berkeley Lab to Push Quantum Information Frontiers With New Programs in Computing, Physics, Materials, and Chemistry

Lawrence Berkeley National Laboratory (Berkeley Lab) this week announced support from the Department of Energy that significantly expands Berkeley Lab’s research efforts in quantum information science, an area of research that harnesses the phenomenon of quantum coherence, in which two or more particles are so tightly entangled that a change to one simultaneously affects the other. Quantum information science seeks to utilize this phenomenon to hold, transmit, and process information.

Watching a Quantum Material Lose Its Stripes

In quantum materials, periodic stripe patterns can be formed by electrons coupled with lattice distortions. To capture the extremely fast dynamics of how such atomic-scale stripes melt and form, Berkeley Lab scientists used femtosecond-scale laser pulses at terahertz frequencies. Along the way, they found some unexpected behavior.