News Center

Dynamic New App for Learning About Particle Physics Now Available

HiggsThumbnail

A free app for Android and Apple devices called The Particle Adventure makes checking out the world of quarks, dark matter, and particle accelerators as easy as tapping touchscreen icons. The science of particle physics is illustrated via categories including “How Do We Know Any of This?” and “Unsolved Mysteries.” You can skim through the major categories or dig deep into topics such as the discovery of the Higgs boson.

Making a Good Thing Better: Berkeley Lab Researchers Open a Possible Avenue to Better Electrolyte for Lithium Ion Batteries

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate. (Image courtesy of Rich Saykally, Berkeley)

Berkeley Lab researchers carried out the first X-ray absorption spectroscopy study of a model electrolyte for lithium-ion batteries and may have found a pathway forward to improving LIBs for electric vehicles and large-scale electrical energy storage.

How Does Space Travel Affect Organ Development?

STS-135_final_flyaround_of_ISS_1

The crew of the International Space Station will soon be joined by 180 mice from Berkeley Lab. Their mission: help scientists learn how space travel affects the immune system, organ development, and reproduction across generations. The mice are part of a Berkeley Lab experiment, funded by NASA this summer, which will shed light on how

Sweet Smell of Success: JBEI Researchers Boost Methyl Ketone Production in E. coli

Methyl ketones were discovered more than a century ago in the aromatic evergreen rue plant. They are now used to provide scents in essential oils and flavoring in cheese, but JBEI research shows they could also serve as advanced biofuels. (Image from Wikimedia Commons)

JBEI researchers have engineered E. coli bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel.

A Cage Made of Proteins, Designed With Help From the Advanced Light Source

Protein Cage

With help from Berkeley Lab’s Advanced Light Source, scientists from UCLA recently designed a cage made of proteins. The nano-sized cage could lead to new biomaterials and new ways to deliver drugs inside cells. It boasts a record breaking 225-angstrom outside diameter, the largest to date for a designed protein assembly. It also has a 130-angstrom-diameter

Is Interstellar’s Science So Stellar?

InterstellarAstronaut thumbnail

Interstellar features astronauts who take a wormhole ride to another galaxy to explore planets around a massive black hole. In a conversation last week, Berkeley Lab’s David Schlegel discussed the science in the movie and what Hollywood could learn from scientists about fantastic settings in outer space.

Berkeley Lab on U.S.-China Joint Announcement on Climate Change

Obama-Xi

On Nov. 11, U.S. President Barack Obama and Chinese President Xi Jinping made a historic U.S.-China Joint Announcement on Climate Change outlining each country’s commitment to strengthen bilateral cooperation on climate change and to announce post-2020 actions in support of the effort to transition to low-carbon economies. Regarding China’s announced target of peaking of carbon

Berkeley Lab Scientists Recipients of 2015 Breakthrough Prizes

Doudna Breakthrough Feature

Berkeley Lab astrophysicist Saul Perlmutter and biochemist Jennifer Doudna were among the featured recipients of the 2015 Breakthrough Prizes in Fundamental Physics and Life Sciences.

Golden Approach to High-speed DNA Reading

Schematic drawing of graphene nanopore with self-integrated
optical antenna (gold) that enhances the optical readout signal (red) of DNA as it passes through a graphene nanopore.

Berkeley researchers have created the world’s first graphene nanopores that feature integrated optical antennas. The antennas open the door to high-speed optical nanopore sequencing of DNA.

Outsmarting Thermodynamics in Self-assembly of Nanostructures

Simulation of feedback driven self-assembly in mass assembly-line. The tilted network indicates aqueous flow in space (blue reservoir). The plasmon gauged potential (red) phothermally dissociates unwanted assemblies and re-assembles into the desired dimers.

Berkeley Lab researchers have achieved symmetry-breaking in a bulk metamaterial solution for the first time, a critical step game toward achieving new and exciting properties in metamaterials.