News Center

The iCLEM Program: An Atypical Summer Job for Bay Area High School Students

iCLEM students thumb

Eight Bay Area high school students are participating in this summer’s iCLEM program, earning money and gaining “college knowledge” while conducting bioenergy research in the state-of-the-art scientific laboratories of the Joint BioEnergy Institute (JBEI).

First Ab Initio Method for Characterizing Hot Carriers Could Hold the Key to Future Solar Cell Efficiencies

A new and better way to study “hot” carriers in semiconductors, a major source of efficiency loss in solar cells, has been developed by scientists at Berkeley Lab. (Photo by Roy Kaltschmidt)

Berkeley Lab researchers have developed the first ab initio method for characterizing the properties of “hot carriers” in semiconductors. This should help clear a major road block to the development of new, more efficient solar cells.

Postcards from the Photosynthetic Edge

Photosytem II utilizes a water-splitting manganese-calcium enzyme that when energized by sunlight catalyzes a four photon-step cycle of oxidation states that ultimately yields molecular oxygen.

Using the world’s most powerful x-ray laser, an international collaboration led by Berkeley Lab researchers took femtosecond “snapshots” of water oxidation in photosystem II, the only known biological system able to harness sunlight for splitting the water molecule. The results should help advance the development of artificial photosynthesis for clean, green and renewable energy.

Taking the Temperature of Deep Geothermal Reservoirs


A lot can happen to water as it rises to the surface from deep underground. It can mix with groundwater, for example. This makes it difficult for scientists to estimate the temperature of a geothermal reservoir, which is an important step as they decide whether a site merits further exploration as a source of clean,

Berkeley Lab’s Jennifer Doudna Gives a CRISPR Interview on NPR

Doudna photo

Jennifer Doudna, a biochemist with Berkeley Lab’s Physical Biosciences Division, was recently interviewed on National Public Radio by Joe Palca for a segment on All Things Considered. The topic was CRISPR, an important new tool for genetic engineering.

Advanced Light Source Provides New Look at Skyrmions: Results Hold Promise for Spintronics

Advanced Light Source images of a Cu2SeO3 sample show five sets of dual-peak skyrmion structures, highlighted by the white ovals. The dual peaks represent the two skyrmion sub-lattices that rotate with respect to each other. All peaks fall on an arc (dotted line) representing the constant amplitude of the skyrmion wave vector.

At Berkeley Lab’s Advanced Light Source, researchers for the first time have used x-rays to observe and study skyrmions, subatomic quasiparticles that could play a key role in future spintronic technologies.

The JBEI GT Collection: A New Resource for Advanced Biofuels Research

The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, features GT clones of rice (shown here) and Arabidopsis plants. (Photo by Roy Kaltschmidt)

The JBEI GT Collection, the first glycosyltransferase clone collection specifically targeted for the study of plant cell wall biosynthesis, is expected to drive basic scientific understanding of GTs and better enable the manipulation of plant cell walls for the production of biofuels and other chemical products.

Natalie Roe Testifies Before Congress on Particle Physics’ Future


On June 10th in Washington D.C. Natalie Roe, Director of the Physics Division at Berkeley Lab, testified at a congressional subcommittee hearing on the future of particle physics, prompted by the recent release of the Particle Physics Project Prioritization report. In addition to detailing the excitement of particle physics’ past and present, Roe presented a

Precision Physics of Antiatoms: Berkeley Lab Physicists Bound the Charge of Antihydrogen

Chukman image charge annihilation Thumbnail

Hydrogen is a neutral atom. Its single electron orbits a single proton, and the net effect is no electrical charge. But what about hydrogen’s antimatter counterpart, antihydrogen? Made of a positron that orbits an antiproton, the antihydrogen atom should be neutral too. Various results have indicated as much, but because the charge of antiatoms is

Producing Hyperpolarized Xenon Gas on a Microfluidic Chip

In this experimental set-up, unpolarized  xenon gas goes in and hyperpolarized xenon gas emerges from a microfluidic chip when the gas becomes polarized through spin exchange with optically pumped rubidium atoms in the chip.

Berkeley Lab researchers have developed a technology by which hyperpolarized xenon gas is produced on a microfluidic chip, providing a contrast agent capable of enhanced NMR signals with a small, portable device.