News Center

Chemistry on the Edge: Study Pinpoints Most Active Areas of Reactions on Nanoscale Particles

Illustration - This illustration shows the setup for an experiment at Berkeley Lab’s Advanced Light Source that used infrared light (shown in red) and an atomic force microscope (middle and top) to study the local surface chemistry on coated platinum particles (yellow) measuring about 100 nanometers in length. (Credit: Hebrew University of Jerusalem)

Defects and jagged surfaces at the edges of nanosized platinum and gold particles are key hot spots for chemical reactivity, researchers confirmed using a unique infrared probe.

New Graphene-Based System Could Help Us ‘See’ Electrical Signaling in Heart and Nerve Cells

Image - This diagram shows the setup for an imaging method that mapped electrical signals using a sheet of graphene and an infrared laser. The laser was fired through a prism (lower left) onto a sheet of graphene. An electrode was used to send tiny electrical signals into a liquid solution (in cylinder atop the graphene), and a camera (lower right) was used to capture images mapping out these electrical signals. (Credit: Halleh Balch and Jason Horng/Berkeley Lab and UC Berkeley)

Scientists have enlisted the exotic properties of graphene to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields. They hope to enlist the new method to image electrical signaling networks in our hearts and brains.

Finding Diamonds in the Rough

The crystal structure of NOV1, a stilbene cleaving oxygenase, shows the features of this enzyme at atomic resolution. (A) This protein fold view highlights the placement of an iron (orange), dioxygen (red), and resveratrol, a representative substrate (blue) in the active site of the enzyme. (B) This surface slice representation shows the shape of the active site cavity and the arrangement of iron, dioxygen, and resveratrol. (Credit: Ryan McAndrew/JBEI and Berkeley Lab)

Researchers at the Joint BioEnergy Institute and the Great Lakes Bioenergy Research Center used crystallography and biophysical methods to better understand how the NOV1 enzyme breaks down a a stilbene substrate into two smaller compounds. Understanding this unusual chemical reaction brings insight on how to generate desirable biofuels and bioproducts from biomass deconstruction.

7 Imaging Tools Pushing Science Forward


Berkeley Lab scientists are developing new ways to see the unseen. Here are seven imaging advances (recently reported in our News Center) that are helping to push science forward, from developing better batteries to peering inside cells to exploring the nature of the universe.   1. Seeing DNA nanostructures in 3-D DNA segments can serve as a

Glowing Crystals Can Detect, Cleanse Contaminated Drinking Water

Researchers have developed a specialized type of glowing metal organic framework, or LMOF (molecular structure at center), that is designed to detect and remove heavy-metal toxins from water. At upper left, mercury (HG2+) is trapped by the LMOF. The graph at lower left shows how the glowing property, known as fluorescence, is turned off as the LMOF binds up the mercury. Its properties make this LMOF useful for both detecting and trapping heavy-metal toxins. (Credit: Rutgers University)

Motivated by public hazards associated with contaminated sources of drinking water, a team of scientists has successfully developed and tested tiny, glowing crystals that can detect and trap heavy-metal toxins like mercury and lead.

X-Rays Capture Unprecedented Images of Photosynthesis in Action

Structure of the oxygen evolving complex in photosystem II in a light-activated state. Water molecules are shown as blue spheres, the four manganese atoms in purple, the calcium in green and the bridging oxygens in red. The blue mesh is the experimental electron density, and the blue solid lines are the protein side chains that provide a scaffold for the catalytic complex.

An international team of scientists is providing new insight into the process by which plants use light to split water and create oxygen. In experiments led by Berkeley Lab scientists, ultrafast X-ray lasers were able to capture atomic-scale images of a protein complex found in plants, algae, and cyanobacteria at room temperature.

3-D Imaging Technique Maps Migration of DNA-carrying Material at the Center of Cells

Image - This image shows the skeletonized structure of heterochromatin (red represents a thin region while white represents a thick region), a tightly packed form of DNA, surrounding another form of DNA-carrying material known as euchromatin (dark blue represents a thin region and yellow represent the thickest) in a mouse’s mature nerve cell. (Credit: Berkeley Lab, UCSF)

Scientists have produced detailed 3-D visualizations that show an unexpected connectivity in the genetic material at the center of cells, providing a new understanding of a cell’s evolving architecture.

Solar Cells Get Boost with Integration of Water-Splitting Catalyst onto Semiconductor

Schematic of the multi-functional water splitting catalyst layer engineered using atomic layer deposition for integration with a high-efficiency silicon cell. (Credit: Ian Sharp/Berkeley Lab)

Berkeley Lab scientists have found a way to engineer the atomic-scale chemical properties of a water-splitting catalyst for integration with a solar cell, and the result is a big boost to the stability and efficiency of artificial photosynthesis. The research comes out of the Joint Center for Artificial Photosynthesis (JCAP), established to develop a cost-effective method of turning sunlight, water, and carbon dioxide into fuel.

Berkeley Lab Takes Home Five R&D 100 Awards for Environmental, Battery, and X-ray Technologies

Photo - The Compact Dynamic Beamstop (CDBS) device, at left, designed to provide real time information to improve X-ray crystallography experiments, with a size comparison to a ballpoint pen tip. (Credit: Berkeley Lab)

Berkeley Lab-developed tech enabling energy-saving roofs, long-lived batteries, better data from X-ray experiments, safer drinking water, and reduced carbon dioxide in the atmosphere have received 2016 R&D 100 awards.

Transformational X-ray Project Takes a Step Forward

Photo - A time-lapse view of the Advanced Light Source building at night. (Credit: Haris Mahic/Berkeley Lab)

A proposed upgrade to the Advanced Light Source—which would provide new views of materials and chemistry at the nanoscale with X-ray beams up to 1,000 times brighter than possible now—has cleared the first step in a Department of Energy approval process. The upgrade would enable new explorations of chemical reactions, battery performance, and biological processes.