News Center

Nanocarriers May Carry New Hope for Brain Cancer Therapy:

Ting Xu feature smaller

Berkeley Lab researchers have developed a new family of nanocarriers, called “3HM,” that meets all the size and stability requirements for effectively delivering therapeutic drugs to the brain for the treatment of a deadly form of cancer known as glioblastoma multiforme.

It Takes a Thief

The overall architecture of Cas1–Cas2 bound to protospacer DNA with line segments that indicate DNA lengths spanning a total of 33 nucleotides.

The discovery by Berkeley Lab researchers of the structural basis by which bacteria are able to capture genetic information from viruses and other foreign invaders for use in their own immunological system holds promise for studying or correcting problems in human genomes.

Atomic View of Microtubules


Berkeley Lab and UC Berkeley researchers produced an atomic view of microtubules that enabled them to identify the crucial role played by a family of end-binding proteins in regulating microtubule dynamic instability, the physical property that enables microtubules to play a crucial role in cell division.

Unlocking the Rice Immune System

Rice is a staple for half the world’s population and the model plant for grass-type biofuel feedstocks (Photo courtesy of IRRI)

JBEI, UC Davis and Berkeley Lab researchers have identified a bacterial signaling molecule that triggers an immunity response in rice plants, enabling the plants to resist a devastating blight disease. Rice is not only a staple food, it is the model for grass-type advanced biofuels.

Possible New RNA Engineering Tool

Eva Nogales feature image

Berkeley Lab researchers have shown that complexes of proteins touted for their potential use as a tool for editing DNA might also serve as an engineering tool for RNA, the molecule that translates DNA’s genetic instructions into the production of proteins.

Skin Tough

Robert Ritchie feature star

A collaboration of Berkeley Lab and UC San Diego researchers has recorded the first direct observations of the micro-scale mechanisms behind the ability of skin to resist tearing. The results could be applied to the improvement of artificial skin, or to the development of thin film polymers for flexible electronics.

Turn the Light On: A Non-visual Opsin Could Help Future Studies of the Brain and Central Nervous System

Udi Zebrafish

Berkeley Lab researchers have discovered a light-sensitive opsin protein that plays a surprising and possibly critical role in neuron maturation and circuit formation in the central nervous system.

Unlocking the Key to Immunological Memory in Bacteria

Jennifer Doudna feature

Berkeley Lab researchers have revealed how bacteria “steal” genetic information from foreign invaders for use in their own immunological memory system.

Screening Plants for Potential Natural Products the New Fashioned Way

Tamas Torok cultures Feature

Contrary to conventional scientific wisdom, an international collaboration led by Berkeley Lab has demonstrated that in vitro biodiversity is sufficiently broad enough to be used for natural plant product screening. Screening in vitro cultures for biological activity is much faster and more economical than screening intact plants.

RCas9: A Programmable RNA Editing Tool


A powerful scientific tool for editing the DNA instructions in a genome can now also be applied to RNA as Berkeley Lab researchers have demonstrated a means by which the CRISPR/Cas9 protein complex can be programmed to recognize and cleave RNA at sequence-specific target sites.