News Center

New Graphene-Based System Could Help Us ‘See’ Electrical Signaling in Heart and Nerve Cells

Scientists have enlisted the exotic properties of graphene to function like the film of an incredibly sensitive camera system in visually mapping tiny electric fields. They hope to enlist the new method to image electrical signaling networks in our hearts and brains.

3-D Imaging Technique Maps Migration of DNA-carrying Material at the Center of Cells

Scientists have produced detailed 3-D visualizations that show an unexpected connectivity in the genetic material at the center of cells, providing a new understanding of a cell’s evolving architecture.

Gatekeeping Proteins to Aberrant RNA: You Shall Not Pass

Berkeley Lab researchers found that aberrant strands of genetic code have telltale signs that enable gateway proteins to recognize and block them from exiting the nucleus. Their findings shed light on a complex system of cell regulation that acts as a form of quality control for the transport of genetic information. A more complete picture of how genetic information gets expressed in cells is important in disease research.

New Form of Electron-beam Imaging Can See Elements that are ‘Invisible’ to Common Methods

A new Berkeley Lab-developed electron-beam imaging technique, tested on samples of nanoscale gold and carbon, greatly improves images of light elements. The technique can reveal structural details for materials that would be overlooked by some traditional methods.

Scientists Take Key Step Toward Custom-made Nanoscale Chemical Factories

Scientists have for the first time reengineered a building block of a geometric nanocompartment that occurs naturally in bacteria. The new design provides an entirely new functionality that greatly expands the potential for these compartments to serve as custom-made chemical factories.

New Weapon in the Fight Against Breast Cancer

Berkeley Lab researchers have developed the first clinically-relevant mouse model of human breast cancer to successfully express functional estrogen receptor positive adenocarcinomas.
This model should be a powerful tool for testing therapies for aggressive ER+ breast cancers and for studying luminal cancers — the most prevalent and deadliest forms of breast cancer.

Nanocarriers May Carry New Hope for Brain Cancer Therapy:

Berkeley Lab researchers have developed a new family of nanocarriers, called “3HM,” that meets all the size and stability requirements for effectively delivering therapeutic drugs to the brain for the treatment of a deadly form of cancer known as glioblastoma multiforme.

CinderBio Harnesses Extreme Microbes for Greener Industry

It’s no secret that extremophiles, or microbes that live in places like polar glaciers and toxic waste pools, may hold treasures worth billions. Now basic biology research has led to the formation of CinderBio, a startup co-founded by Berkeley Lab scientists Steve Yannone and Jill Fuss that produces heat- and acid-stable enzymes.

It Takes a Thief

The discovery by Berkeley Lab researchers of the structural basis by which bacteria are able to capture genetic information from viruses and other foreign invaders for use in their own immunological system holds promise for studying or correcting problems in human genomes.

Cellular Contamination Pathway for Plutonium, Other Heavy Elements, Identified

Scientists at Lawrence Berkeley National Laboratory have reported a major advance in understanding the biological chemistry of radioactive metals, opening up new avenues of research into strategies for remedial action in the event of possible human exposure to nuclear contaminants.