News Center

Solving an Organic Semiconductor Mystery

Sketch of organic semiconductor thin film shows that the interfacial region between larger domains (blue and green) consists of randomly oriented small, nano-crystalline domains (purple).

Organic semiconductors are prized for light emitting diodes (LEDs), field effect transistors (FETs) and photovoltaic cells. As they can be printed from solution, they provide a highly scalable, cost-effective alternative to silicon-based devices. Uneven performances, however, have been a persistent problem. That’s now changed.

Piezoelectricity in a 2D Semiconductor

Xiang Zhang feature MoS2

Berkeley Lab researchers have opened the door to low-power off/on switches in micro-electro-mechanical systems (MEMS) and nanoelectronic devices, as well as ultrasensitive bio-sensors, with the first observation of piezoelectricity in a free standing two-dimensional semiconductor.

Making a Good Thing Better: Berkeley Lab Researchers Open a Possible Avenue to Better Electrolyte for Lithium Ion Batteries

X-ray absorption spectra, interpreted using first-principles electronic structure calculations, provide insight into the solvation of the lithium ion in propylene carbonate. (Image courtesy of Rich Saykally, Berkeley)

Berkeley Lab researchers carried out the first X-ray absorption spectroscopy study of a model electrolyte for lithium-ion batteries and may have found a pathway forward to improving LIBs for electric vehicles and large-scale electrical energy storage.

Switching to Spintronics


Berkeley Lab researchers used an electric field to reverse the magnetization direction in a multiferroic spintronic device at room temperature, a demonstration that points a new way towards spintronics and smaller, faster and cheaper ways of storing and processing data.

A Better Look at the Chemistry of Interfaces

Chuck Fadley feature image Large

SWAPPS – Standing Wave Ambient Pressure Photoelectron Spectroscopy – is a new X-ray technique developed at Berkeley Lab’s Advanced Light Source that provides sub-nanometer resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries, fuel cells and other devices.

Golden Approach to High-speed DNA Reading

Schematic drawing of graphene nanopore with self-integrated
optical antenna (gold) that enhances the optical readout signal (red) of DNA as it passes through a graphene nanopore.

Berkeley researchers have created the world’s first graphene nanopores that feature integrated optical antennas. The antennas open the door to high-speed optical nanopore sequencing of DNA.

Outsmarting Thermodynamics in Self-assembly of Nanostructures

Simulation of feedback driven self-assembly in mass assembly-line. The tilted network indicates aqueous flow in space (blue reservoir). The plasmon gauged potential (red) phothermally dissociates unwanted assemblies and re-assembles into the desired dimers.

Berkeley Lab researchers have achieved symmetry-breaking in a bulk metamaterial solution for the first time, a critical step game toward achieving new and exciting properties in metamaterials.

Dispelling a Misconception About Mg-Ion Batteries

David Prendergast and Liwen Wan at the Molecular Foundry used supercomputer simulations to dispel a popular misconception about magnesium-ion batteries that should help advance the technology in the future. (Photo by Roy Kaltschmidt)

Berkeley Lab researchers, working under the JCESR Energy Hub, used supercomputer simulations to dispel a popular misconception about magnesium-ion batteries that should help advance the development of multivalent ion battery technology.

Excitonic Dark States Shed Light on TMDC Atomic Layers

Berkeley Lab researchers have found evidence for excitonic dark states in monolayers of tungsten disulfide that could explain the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials.

Berkeley Lab researchers believe they have uncovered the secret behind the unusual optoelectronic properties of single atomic layers of TMDC materials, the two-dimensional semiconductors that hold great promise for nanoelectronic and photonic applications.

Advanced Light Source Sets Microscopy Record

Ptychographic image using soft X-rays of lithium iron phosphate nanocrystal after partial dilithiation. The delithiated region is shown in red.

Working at Berkeley Lab’s Advanced Light Source (ALS), researchers used “soft” X-rays to image structures only five nanometers in size. This resolution is the highest ever achieved with X-ray microscopy.