News Center

Overcoming Brittleness: New Insights into Bulk Metallic Glass

Berkeley Lab researchers have found a bulk metallic glass based on palladium that’s as strong as the best composite bulk metallic glasses and comparable to steel, aluminum and titanium.

Taking a New Look at Carbon Nanotubes

Two of the biggest challenges in carbon nanotube research have been met with the development by Berkeley Lab researchers of a technique that can be used to identify the structure of an individual carbon nanotube and characterize its electronic and optical properties in a functional device.

Of Fish Scales and Adaptable Armor – The Things That X-Rays Can Tell You

X-ray beams from Berkeley Lab’s Advanced Light Source uncovered the secret behind the scales of a fish tough enough to withstand piranha bites.

Diamond Imperfections Pave the Way to Technology Gold

Using ultrafast 2D electronic spectroscopy, Berkeley Lab researchers have recorded unprecedented observations of energy moving through the atom-sized diamond impurities known as nitrogen-vacancy (NV) centers. Their results provide information on NV centers that is important for such highly promising advanced technologies as supersensitive detections of magnetic fields and quantum computing.

“Molecular Velcro” May Lead to Cost-Effective Alternatives to Natural Antibodies

Taking inspiration from the human immune system, researchers at Berkeley Lab have created a new material that can be programmed to identify an endless variety of molecules. The new material resembles tiny sheets of Velcro, each just one-hundred nanometers across. But instead of securing your sneakers, this molecular Velcro mimics the way natural antibodies recognize viruses and toxins, and could lead to a new class of biosensors.

Advanced Light Source Provides a New Look at Vanadium Dioxide

Researchers at the Advanced Light Source took a new look at vanadium dioxide, a correlated material that could be used to make energy-efficient ultrafast electronic switches.

3D Dynamic Imaging of Soft Materials

Through a combination of transmission electron microscopy (TEM) and a unique graphene liquid cell, Berkeley Lab researchers have recorded the three-dimensional motion of DNA connected to gold nanocrystals, the first reported use of TEM for 3D dynamic imaging of soft materials.

Raising the IQ of Smart Windows

Researchers at Berkeley Lab have designed a new material to make smart windows even smarter. The material is a thin coating of nanocrystals embedded in glass that can dynamically modify sunlight as it passes through a window. Unlike existing technologies, the coating provides selective control over visible light and heat-producing near-infrared (NIR) light, so windows can maximize both energy savings and occupant comfort in a wide range of climates.

New Twist in the Graphene Story:

Berkeley Lab researchers, working at the Advanced Light Source, have discovered that in the making of bilayer graphene, a tiny structural twist arises that can lead to surprisingly strong changes in the material’s electronic properties

3D IR Images Now in Full Color

Berkeley Lab and University of Wisconsin researchers have created the first technique to offer full color IR tomography, a non-destructive 3D imaging process that provides molecular-level chemical information of unprecedented detail on biological and other specimens with no need to stain or alter the specimen.