News Center

Berkeley Lab to Build an Advanced Quantum Computing Testbed

The U.S. Department of Energy announced today that Berkeley Lab will receive $30 million over five years to build and operate an Advanced Quantum Testbed. Researchers will use the testbed to explore superconducting quantum processors and evaluate how these emerging quantum devices can be utilized to advance scientific research. As part of this effort, Berkeley Lab will collaborate with MIT Lincoln Laboratory to deploy different quantum processor architectures.

Getting a Charge Out of MOFs

Researchers at Berkeley Lab and UC Berkeley have made a MOF with the highest electron charge mobilities ever observed, along with a technique to improve the conductivity of other MOFs.

Scientists ‘Squeeze’ Nanocrystals in a Liquid Droplet Into a Solid-Like State – and Back Again

A team led by scientists at Berkeley Lab found a way to make a liquid-like state behave more like a solid, and then to reverse the process.

New Competition for MOFs: Scientists Make Stronger COFs

Hollow molecular structures known as COFs suffer from an inherent problem: It’s difficult to keep a network of COFs connected in harsh chemical environments. Now, a team at the Berkeley Lab has used a chemical process discovered decades ago to make the linkages between COFs much more sturdy, and to give the COFs new characteristics that could expand their applications.

Non-Crystal Clarity: Scientists Find Ordered Magnetic Patterns in Disordered Magnetic Material

A team of scientists working at Berkeley Lab has confirmed a special property known as “chirality” – which potentially could be exploited to transmit and store data in a new way – in nanometers-thick samples of multilayer materials that have a disordered structure.

There’s a New Microscope in Town: ThemIS, anyone?

Researchers at the Berkeley Lab now have access to a unique new microscope that combines atomic-scale imaging capabilities with the ability to observe real-world sample properties and behavior in real time.

Graphene Layered With Magnetic Materials Could Drive Ultrathin Spintronics

Researchers working at Berkeley Lab coupled graphene, a monolayer form of carbon, with thin layers of magnetic materials like cobalt and nickel to produce exotic behavior in electrons that could be useful for next-generation computing applications.

Diamond ‘Spin-Off’ Tech Could Lead to Low-Cost Medical Imaging and Drug Discovery Tools

An international team led by scientists at Berkeley Lab and UC Berkeley discovered how to exploit defects in nanoscale and microscale diamonds and potentially enhance the sensitivity of magnetic resonance imaging and nuclear magnetic resonance systems while eliminating the need for their costly and bulky superconducting magnets.

Valleytronics Discovery Could Extend Limits of Moore’s Law

Research appearing today in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate “valleytronics” transistor material that might one day enable chipmakers to pack more computing power onto microchips.

Berkeley Lab Scientists Print All-Liquid 3-D Structures

Scientists have developed a way to print 3-D structures composed entirely of liquids. Using a modified 3-D printer, they injected threads of water into silicone oil — sculpting tubes made of one liquid within another liquid.