News Center

A New Spin on Quantum Computing: Scientists Train Electrons with Microwaves

Photo: Researchers at Berkeley Lab's NCDX-II accelerator.

In what may provide a potential path to processing information in a quantum computer, researchers have switched an intrinsic property of electrons from an excited state to a relaxed state on demand using a device that served as a microwave “tuning fork.”

Polar Vortices Observed in Ferroelectric

Ramesh vortices feature

Berkeley Lab researchers have observed polar vortices in a ferroelectric material that appear to be the electrical cousins of magnetic skyrmions. This discovery holds intriguing possibilities for advanced electronic devices and could also rewrite our basic understanding of ferroelectrics.

Diamonds May Be the Key to Future NMR/MRI Technologies

Press Image 2

Berkeley Lab researchers have demonstrated that diamonds may hold the key to the future for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies. NMR/MRI signals were significantly strengthened through the hyperpolarization of carbon-13 nuclei in diamond using microwaves.

Is Black Phosphorous the Next Big Thing in Materials?

Black phosphorous, named for its distinctive color, is a natural semiconductor with an energy bandgap that allows its electrical conductance to be switched “on and off.”

Berkeley Lab researchers have confirmed that single-crystal black phosphorous nanoribbons display a strong in-plane anisotropy in thermal conductivity, an experimental revelation that should facilitate the future application of this highly promising material to electronic, optoelectronic and thermoelectric devices.

A Different Type of 2D Semiconductor

Peidong image peovskite best

Berkeley Lab researchers have produced the first atomically thin 2D sheets of organic-inorganic hybrid perovskites. These ionic materials exhibit optical properties not found in 2D covalent semiconductors such as graphene, making them promising alternatives to silicon for future electronic devices.

Making 3D Objects Disappear

Xiang Zhang feature image cloak

Berkeley researchers have devised an ultra-thin invisibility “skin” cloak that can conform to the shape of an object and conceal it from detection with visible light. Although this cloak is only microscopic in size, the principles behind the technology should enable it to be scaled-up to conceal macroscopic items as well.

Defects Through the Looking Glass

Rachel Berk feature

Berkeley Lab researchers have demonstrated a new method that can be applied to study individual defects in a widely used bulk insulating material, hexagonal boron nitride (h-BN), by employing scanning tunneling microscopy (STM).

Soaking Up Carbon Dioxide and Turning it into Valuable Products

Structural model showing a covalent organic framework (COF)  embedded with a cobalt porphyrin.

Berkeley Lab researchers have incorporated molecules of porphyrin CO2 catalysts into the sponge-like crystals of covalent organic frameworks (COFs) to create a molecular system that not only absorbs CO2, but also selectively reduces it to CO, a primary building block for a wide range of chemical products.

Berkeley Lab Researchers Observe Shortest Wavelength Plasmons Ever in Single Walled Nanotubes

Feng Wang sSNOM feature

Working at the Advanced Light Source, Berkeley Lab researchers have observed “Luttinger-liquid” plasmons in metallic single-walled nanotubes. This holds great promise for novel plasmonic and nanophotonic devices over a broad frequency range, including telecom wavelengths.

Defects Can “Hulk-Up” Materials

Junqaio Wu Hulk feature

A Berkeley Lab study has shown that just as exposure to gamma radiation transforms Bruce Banner into fictional superhero the Hulk, exposure to alpha-particle radiation can transform thermoelectric materials into far more powerful versions of themselves.