News Center

Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment

By combining biocompatible light-capturing nanowire arrays with select bacterial populations, a potentially game-changing new artificial photosynthesis system offers a win/win situation for the environment: solar-powered green chemistry using sequestered carbon dioxide.

On the Road to Spin-orbitronics

Berkeley Lab researchers have discovered a new way of manipulating the magnetic domain walls in ultrathin magnets that could one day revolutionize the electronics industry through a technology called “spin-orbitronics.”

Bacterial Armor Holds Clues for Self-Assembling Nanostructures

Berkeley Lab researchers at the Molecular Foundry have uncovered key details in the process by which bacterial proteins self-assemble into a protective coating, like chainmail armor. This process can be a model for the self-assembly of 2D and 3D nanostructures.

New Design Tool for Metamaterials

Berkeley Lab researchers have shown that it is possible to predict the nonlinear optical properties of metamaterials using a recent theory for nonlinear light scattering when light passes through nanostructures.

Precision Growth of Light-emitting Nanowires

A novel approach to growing nanowires promises a new means of control over their light-emitting and electronic properties. Berkeley Lab researchers demonstrated a new growth technique that uses specially engineered catalysts. These catalysts have given scientists more options than ever in tuning the color of light-emitting nanowires.

From the Lab to Your Digital Device, Quantum Dots Have Made Quantum Leaps

Berkeley Lab’s quantum dots have not only found their way into tablets, computer screens, and TVs, they are also used in biological and medical imaging tools, and now Paul Alivisatos’ lab is exploring them for solar cell as well as brain imaging applications.

A Cage Made of Proteins, Designed With Help From the Advanced Light Source

With help from Berkeley Lab’s Advanced Light Source, scientists from UCLA recently designed a cage made of proteins. The nano-sized cage could lead to new biomaterials and new ways to deliver drugs inside cells. It boasts a record breaking 225-angstrom outside diameter, the largest to date for a designed protein assembly. It also has a 130-angstrom-diameter

Outsmarting Thermodynamics in Self-assembly of Nanostructures

Berkeley Lab researchers have achieved symmetry-breaking in a bulk metamaterial solution for the first time, a critical step game toward achieving new and exciting properties in metamaterials.

Nanotubes that Insert Themselves into Cell Membranes

Berkeley Lab researchers have helped show that short carbon nanotubes can make excellent artificial pores within cell membranes. Moreover, these nanotubes, which are far more rugged than their biological counterparts, can self-insert into a cell membrane or other lipid bilayers.

Lord of the Microrings

Berkeley Lab researchers report a significant breakthrough in laser technology with the development of a unique microring laser cavity that can produce single-mode lasing on demand. This advance holds ramifications for a wide range of optoelectronic applications including metrology and interferometry, data storage and communications, and high-resolution spectroscopy.