News Center

Not Much Force: Berkeley Researchers Detect Smallest Force Ever Measured

Mechanical oscillators translate an applied force into measureable mechanical motion. The Standard Quantum Limit is imposed by the Heisenberg uncertainty principle, in which the measurement itself perturbs the motion of the oscillator, a phenomenon known as “quantum back-action.” (Image by Kevin Gutowski)

Berkeley Lab researchers have detected the smallest force ever measured – approximately 42 yoctonewtons – using a unique optical trapping system that provides ultracold atoms. A yoctonewton is one septillionth of a newton.

Beyond the Higgs Boson: A Detector Add-on Helps Scientists Look Deeper

Installation of Insertable b-Layer, or IBL into the ATLAS detector of the Large Hadron Collider. Credit: Heinz Pernegger, CERN

Last month, ATLAS, the particle detector that helped find the Higg’s boson, got an upgrade. Scientists at the Large Hadron Collider at CERN added a new set of sensors, called the Insertable b-Layer, or IBL, into the core of the detector. The IBL will be closer to particle collisions than previous sensors and contain more,

Surprisingly Strong Magnetic Fields Challenge Black Holes’ Pull

A computer simulation of gas (in yellow) falling into a black hole (too small to be seen). Twin jets are also shown with magnetic field lines. Image credit: Alexander Tchekhovskoy, LBL

A new study of supermassive black holes at the centers of galaxies has found magnetic fields play an impressive role in the systems’ dynamics. In fact, in dozens of black holes surveyed, the magnetic field strength matched the force produced by the black holes’ powerful gravitational pull, says a team of scientists from Berkeley Lab and Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, Germany.

A Path Toward More Powerful Tabletop Accelerators

3D Map of the longitudinal wakefield generated by the incoherent combination of 208 low-energy laser beamlets. In the region behind the driver, the wakefield is regular. Credit: Carlo Benedetti, Berkeley Lab

Making a tabletop particle accelerator just got easier. A new study shows that certain requirements for the lasers used in an emerging type of small-area particle accelerator can be significantly relaxed. Researchers hope the finding could bring about a new era of accelerators that would need just a few meters to bring particles to great

Superheavy Chemistry, One Atom at a Time


It’s now more or less official: element 117 will have a seat at the periodic table. Earlier this month an international team of scientists that included researchers from Lawrence Berkeley National Lab’s Nuclear Science Division found two atoms of superheavy element 117. The experiment, conducted at a particle accelerator at the GSI Helmholtz Center for

In Memoriam: Andrew Sessler, Former Laboratory Director, Acclaimed Physicist and Humanitarian


Andrew Sessler, former Laboratory Director and acclaimed physicist and humanitarian, has died.

BOSS Quasars Track the Expanding Universe – the Most Precise Measurement Yet

The Baryon Oscillation Spectroscopic Survey (BOSS) pioneered the use of quasars to chart the universe’s expansion and investigate the properties of dark energy through studies of large-scale structure. New techniques of analysis led by Berkeley Lab scientists, combined with other new BOSS quasar measures of the young universe’s structure, have produced the most precise measurement of expansion since galaxies formed.

Setting a Trap for Gravity Waves

In 1996 Uros Seljak was a postdoc at Harvard, contemplating ways to extract information from the cosmic microwave background (CMB). The distribution of anisotropies, slight temperature differences, in the CMB had much to say about the large-scale structure of the universe. If it were also possible to detect the polarization of the CMB itself, however,

Standard-Candle Supernovae are Still Standard, but Why?

Until recently, scientists thought they knew why Type Ia supernovae – the best cosmological “standard candles” – are all so much alike. But their favorite scenario was wrong. White dwarfs don’t all reach the Chandrasekhar limit, 1.4 times the mass of our sun, before they detonate in a massive thermonuclear explosion. Most Type Ia progenitors are less massive, and a few are even more massive. New work by the Berkeley Lab-based Nearby Supernova Factory can identify which theories of the strange circumstances that lead to a Type Ia explosion actually work and which don’t.

Heavy Flavor Tracker for STAR

Studies of the quark-gluon plasma – the primordial soup of quarks and gluons whose brief existence after the big bang set the stage for the universe we know today – is poised for a major upgrade thanks to a new particle detector system called the “Heavy Flavor Tracker.”