News Center

Amazon Rainforest Absorbing Less Carbon Than Expected

Agriculture, forestry, and other types of land use account for 23% of human-caused greenhouse gas emissions, yet at the same time natural land processes absorb the equivalent of almost a third of carbon dioxide emissions from fossil fuels and industry. How long will the Amazon rainforest continue to act as an effective carbon sink?

Cool Roofs Can Help Shield California’s Cities Against Heat Waves

A new study by researchers at Lawrence Berkeley National Laboratory shows that if every building in California sported “cool” roofs by 2050, these roofs would help contribute to protecting urbanites from the consequences of dangerous heatwaves.

Two Berkeley Lab Researchers Receive DOE Early Career Research Awards

Two scientists at Lawrence Berkeley National Laboratory have been selected by the U.S. Department of Energy’s Office of Science to receive significant funding for research through its Early Career Research Program.

Can We Reuse Polluted Water? Yes, Add Bacteria

Every year, hydraulic fracturing of oil and gas wells generates billions of gallons of contaminated water. Scientists at Berkeley Lab and the CO School of Mines believe microbes could be the key to turning this waste into a resource.

New Sensor Could Shake Up Earthquake Response Efforts

An optical sensor developed at Berkeley Lab could speed up the time it takes to evaluate whether buildings are safe to occupy after a major earthquake. After four years of extensive peer-reviewed research and simulative testing at the University of Nevada’s Earthquake Engineering Laboratory, the Discrete Diode Position Sensor (DDPS) will be deployed for the first time this summer in a multi-story building at Berkeley Lab – which sits adjacent to the Hayward Fault, considered one of the most dangerous faults in the United States.

Berkeley Lab Receives DOE Support for Building to Study Microbe-Ecosystem Interactions for Energy and Environmental Research

Berkeley Lab recently received federal approval to proceed with preliminary design work for a state-of-the-art building that would revolutionize investigations into how interactions among microbes, water, soil, and plants shape entire ecosystems. Research performed in the building could help address many of today’s energy, water, and food challenges.

Scientists Hit Pay Dirt with New Microbial Research Technique

Long ago, during the European Renaissance, Leonardo da Vinci wrote that we humans “know more about the movement of celestial bodies than about the soil underfoot.” Five hundred years and innumerable technological and scientific advances later, his sentiment still holds true. But that could soon change. A new study in Nature Communications details how an improved method for studying microbes in the soil will help scientists understand both fine-grained details and large-scale cycles of the environment.

Mineral Discovery Made Easier: X-Ray Technique Shines a New Light on Tiny, Rare Crystals

Like a tiny needle in a sprawling hayfield, a single crystal grain measuring just tens of millionths of a meter – found in a borehole sample drilled in Central Siberia – had an unexpected chemical makeup. And a specialized X-ray technique in use at Berkeley Lab confirmed the sample’s uniqueness and paved the way for its formal recognition as a newly discovered mineral: ognitite.

To Pump or Not to Pump: New Tool Will Help Water Managers Make Smarter Decisions

The overpumping of groundwater in California has led to near environmental catastrophe in some areas – land is sinking, seawater is intruding, and groundwater storage capacity has shrunk. But researchers at Lawrence Berkeley National Laboratory believe machine learning could be part of the solution to restoring groundwater to sustainable levels and quality.

Understanding Microbiomes for Advanced Wastewater Treatment and Reuse Systems

Wastewater is treated by an activated sludge process in municipal wastewater treatment plants and returned to the environment for use. This treatment process has been used for over a century, and today represents the largest application of biotechnology in the world, yet there has been no effort to map the global activated sludge microbiome. A