News Center

The Future Looks Bright for Infinitely Recyclable Plastic

Plastics are ubiquitous, but they’re not practical. Less than 10% are recycled, and the other ~8 billion tons are creating a pollution crisis. A Berkeley Lab team is determined to change that. A new analysis shows producing and recycling their game-changing new plastic could be easy and cheap enough to leave old plastics in the dust.

From Smoky Skies to a Green Horizon: Scientists Convert Fire-Risk Wood into Biofuel

Scientists from Berkeley Lab and Sandia National Laboratories have collaborated to develop a streamlined and efficient process for converting woody plant matter like forest overgrowth and agricultural waste – material that is currently burned either intentionally or unintentionally – into liquid biofuel.

The Green Secrets of Goat Poop

Converting the tough fibers and complex sugars in plants into biofuels and other products could be humanity’s ticket to smarter materials, better medicines, and a petroleum-free, sustainable future. Hoping to discover new and improved ways of processing plant material for industrial purposes, scientists like Michelle O’Malley at UC Santa Barbara and the Joint BioEnergy Institute have been studying the gut microbiomes of the planet’s most prolific herbivores: ruminant animals such as goats.

The Secret to Renewable Solar Fuels Is an Off-and-On Again Relationship

Copper that was once bound with oxygen is better at converting CO2 into renewable fuels than copper that was never bound to oxygen, according to Berkeley Lab and Caltech scientists. They say it’s better to have had something special and lost it than to have never had it at all – who would have thought that holds true for metal oxides within solar fuel catalysts?

Nature-Inspired Green Energy Technology Clears Major Development Hurdle

A new material design has put the long-sought idea of artificial photosynthesis within reach.

The Wild World of Microbe-Made Products – Skis Now Included

Biomanufacturing – harnessing biological processes in cells and microbes to design and manufacture products – is revolutionizing how we make everything from futuristic consumer goods to sustainable fuels to breakthrough medicines. Every biomanufactured product can be traced back to discoveries in the lab, but translating that science into a real-world product can be tricky. Berkeley Lab is helping to move great ideas, like outdoor gear made from algae oil, from conception to commercialization.

Scientists Find a Molecular Switch for Better Biofuels

Adapted from an original release published by Lawrence Livermore National Laboratory. Read the full story here  Plant cell walls contain a renewable, nearly-limitless supply of sugar that can be used as a carbon source for microbe-based chemical and biofuel production. However, retrieving these sugars isn’t all that easy. Imidazolium ionic liquid (IIL) solvents are some

Bright Skies for Plant-Based Jet Fuels

With an estimated daily fuel demand of more than 5 million barrels per day, the global aviation sector is incredibly energy-intensive and almost entirely reliant on petroleum-based fuels. But a new analysis by Berkeley Lab shows that sustainable plant-based bio-jet fuels could be competitive with conventional fuels if current development and scale-up initiatives continue to push ahead successfully.

Berkeley Lab Water Conservation Efforts Pay Off in Unexpected Ways

With California in an extreme drought, Berkeley Lab started a number of water conservation efforts two years ago. But when Chief Sustainability Officer John Elliott started seeing drops in water usage that were much larger than what could be attributed to the conservation projects, he realized there was something more at play.

Berkeley Lab’s List of Top 50 Game-Changing Technologies for Defeating Global Poverty

Since the polio vaccine was introduced in the 1950s, one of the most dreaded diseases in history has been all but eradicated. Are there other scientific breakthroughs that could have an equally transformative impact on global human development, and if so, what are they?