News Center

Berkeley Lab Scientists Map Key DNA Protein Complex at Near-Atomic Resolution

Using cryo-electron microscopy (cryo-EM), Berkeley Lab scientists have obtained 3-D models of a human transcription factor at near-atomic resolutions. The protein complex is critical to gene expression and DNA repair, and could aid research in targeted drug development.

Internship Fuels a Student’s Budding Career in Science

Ever wonder what the Advanced Biofuels Process Demonstration Unit looks like from the inside? Check out Carolina Gutierrez’s Berkeley Lab Instagram Takeover, “The Day in the Life of an Intern at ABPDU,” at As a high school student in her hometown of Manteca, California, Carolina Gutierrez was a top student who excelled in advanced

Seeing More with PET Scans: Scientists Discover New Way to Label Chemical Compounds for Medical Imaging

Researchers have found a surprisingly versatile workaround to create chemical compounds that could prove useful for medical imaging and drug development.

NIH Awards $9.3M for Further Development of PHENIX Structural Biology Software

PHENIX, a software suite launched 17 years ago at Berkeley Lab to automate the analysis of structural biology data, has received $9.3 million from the National Institutes of Health for continued development. The grant will support the use of PHENIX to build and refine models to solve three-dimensional macromolecular structures.

New Berkeley Lab Algorithms Extract 3-D Biological Structure From Limited Data

A new algorithmic framework called M-TIP helps researchers determine the molecular structure of proteins and viruses from X-ray free electron laser data, which is crucial in fields like biology and medicine.

Researchers ID New Mechanism for Keeping DNA Protein in Line

Electrostatic forces known as phosphate steering help guide the actions of an enzyme called FEN1 that is critical in DNA replication and repair, finds a new study led by Berkeley Lab researchers. The findings help explain how FEN1 distinguishes which strands of DNA to target, revealing key details about a vital process in healthy cells as well as providing new directions for cancer treatment research.

What’s On Your Skin? Archaea, That’s What

It turns out your skin is crawling with single-celled microorganisms – and they’re not just bacteria. A study by Lawrence Berkeley National Laboratory and the Medical University of Graz has found that the skin microbiome also contains archaea, a type of extreme-loving microbe, and that the amount of it varies with age.

Study Sheds Light on How Bacterial Organelles Assemble

Scientists at Berkeley Lab and Michigan State University are providing the clearest view yet of an intact bacterial microcompartment, revealing at atomic-level resolution the structure and assembly of the organelle’s protein shell. This work could benefit research in bioenergy and pathogenesis, and it could lead to new methods of bioengineering bacteria for beneficial purposes.

Researchers Find New Mechanism for Genome Regulation

The mechanisms that separate mixtures of oil and water may also help the organization of a part of our DNA called heterochromatin, according to a new Berkeley Lab study. Researchers found that liquid-liquid phase separation helps heterochromatin organize large parts of the genome into specific regions of the nucleus. The work addresses a long-standing question about how DNA functions are organized in space and time, including how genes are silenced or expressed.

Researchers Find a Surprise Just Beneath the Surface in Carbon Dioxide Experiment

X-ray experiments at Berkeley Lab, coupled with theoretical work, revealed how oxygen atoms embedded very near the surface of a copper sample had a more dramatic effect on the early stages of a reaction with carbon dioxide than earlier theories could account for. This work could prove useful in designing new types of materials to make reactions more efficient in converting carbon dioxide into liquid fuels and other products.