News Center

Major Advance in Artificial Photosynthesis Poses Win/Win for the Environment

Peidong feature image

By combining biocompatible light-capturing nanowire arrays with select bacterial populations, a potentially game-changing new artificial photosynthesis system offers a win/win situation for the environment: solar-powered green chemistry using sequestered carbon dioxide.

Electrolyte Genome Could Be Battery Game-Changer

Berkeley Lab scientist Kristin Persson and her electrolyte genome team.

A new breakthrough battery—one that has significantly higher energy, lasts longer, and is cheaper and safer—will likely be impossible without a new material discovery. And a new material discovery could take years, if not decades, since trial and error has been the best available approach. But Berkeley Lab scientist Kristin Persson says she can take some of the guesswork out of the discovery process with her Electrolyte Genome.

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

Berkeley Lab research associate

A collaboration led by Berkeley Lab scientists has established a method to simulate in the lab the soiling and weathering of roofing materials, reproducing in only a few days the solar reflectance of roofing products naturally aged for three years. Now this protocol has been approved by ASTM International as a standard practice for the industry.

A Better Way of Scrubbing CO2

Manganese-based MOF

Berkeley Lab researchers have discovered a means by which the removal of carbon dioxide (CO2) from coal-fired power plants might one day be done far more efficiently and at far lower costs than today. By appending a diamine molecule to the sponge-like solid materials known as metal-organic-frameworks (MOFs), the researchers were able to more than triple the CO2-scrubbing capacity of the MOFs, while significantly reducing parasitic energy.

Biofuel Proteomics: Joint BioEnergy Institute Researchers Use Proteomics to Profile Switchgrass

Switchgrass is a North American native prairie grass widely viewed as one of the most promising of all the biofuel crop candidates. (Photo courtesy of GLBRC)

JBEI researchers used advanced proteomic techniques to identify 1,750 unique proteins in shoots of switchgrass, a native prairie grass viewed as one of the most promising of all the plants that could be used to produce advanced biofuels.

Metabolic Path to Improved Biofuel Production

Jamie Cate feature 1

Researchers at the Energy Biosciences Institute have found a way to increase the production of fuels and other chemicals from biomass fermented by yeast without the need of environmentally harsh pre-treatments or expensive enzyme cocktails.

Better Batteries from Berkeley Lab’s Work with Industry

Berkeley Lab battery scientist Marca Doeff, in the lab with scanning electron microscope. (Photo by Kelly Owen/Berkeley Lab)

Until recently, it was often difficult for private industry to take advantage of Berkeley Lab’s resources. That has changed with CalCharge, a unique public-private partnership uniting the California Bay Area’s emerging and established battery technology companies with critical academic and government resources.

New Battery Startup Promises Safe Lithium Batteries

Two of Blue Current's three co-founders, Nitash Balsara (left) and Alex Teran. (Photo courtesy Blue Current)

Berkeley Lab battery scientist Nitash Balsara has worked for many years trying to find a way to improve the safety of lithium-ion batteries. Now he believes he has found the answer in a most unlikely material—a class of compounds that has mainly been used for industrial lubrication.

New Design Tool for Metamaterials

Xiang Zhang  new feature

Berkeley Lab researchers have shown that it is possible to predict the nonlinear optical properties of metamaterials using a recent theory for nonlinear light scattering when light passes through nanostructures.

Rediscovering Spontaneous Light Emission

OLYMPUS DIGITAL CAMERA

LEDs could replace lasers for short-range optical communications with the use of an optical antenna that enhances the spontaneous emission of light from atoms, molecules and semiconductor quantum dots.