News Center

Big Data at the Atomic Scale: New Detector Reaches New Frontier in Speed

A superfast detector installed on an electron microscope at Berkeley Lab’s Molecular Foundry will reveal atomic-scale details across a larger sample area than could be seen before, and produce movies showing chemistry in action and changes in materials.

16 Elements: Berkeley Lab’s Contributions to the Periodic Table

Lawrence Berkeley National Laboratory is credited with discovering more elements on the periodic table than any other institution. In celebration of its 150th anniversary, we look at how far it’s come and where it’s headed.

How to Escape a Black Hole: Simulations Provide New Clues to What’s Driving Powerful Plasma Jets

New simulations led by researchers working at the Berkeley Lab and UC Berkeley combine decades-old theories to provide new insight about the driving mechanisms in plasma jets that allow them to steal energy from black holes’ powerful gravitational fields and propel it far from their gaping mouths.

Revealing Hidden Spin: Unlocking New Paths Toward High-Temperature Superconductors

Berkeley Lab researchers have discovered that electron spin is key to understanding how cuprate superconductors can conduct electricity without loss at high temperature.

Massive New Dark Matter Detector Gets Its ‘Eyes’

The LUX-ZEPLIN dark matter detector, which will soon begin its deep-underground search for particles thought to account for most matter in the universe, now has “eyes.”

Topological Matters: Toward a New Kind of Transistor

An experiment conducted at Berkeley Lab has demonstrated, for the first time, electronic switching in an exotic, ultrathin material that can carry a charge with nearly zero loss at room temperature. Researchers demonstrated this switching when subjecting the material to a low-current electric field.

Berkeley Lab, Oak Ridge National Lab Share 2018 ACM Gordon Bell Prize

A team of computational scientists and engineers from Berkeley Lab, Oak Ridge National Laboratory, and NVIDIA has been awarded the ACM Gordon Bell Prize for applying an exascale-class deep learning application to extreme climate data and breaking the exaop (1 billion billion calculations) computing barrier for the first time with a deep learning application.

Climate Simulations Project Wetter, Windier Hurricanes

New supercomputer simulations by climate scientists at Lawrence Berkeley National Laboratory have shown that climate change intensified the amount of rainfall in recent hurricanes such as Katrina, Irma, and Maria by 5 to 10 percent. They further found that if those hurricanes were to occur in a future world that is warmer than present, those storms would have even more rainfall and stronger winds.

Scientists Bring Polymers Into Atomic-Scale Focus

A Berkeley Lab-led research has adapted a powerful electron-based imaging technique to obtain a first-of-its-kind image of atomic-scale structure in a synthetic polymer. The research could ultimately inform polymer fabrication methods and lead to new designs for materials and devices that incorporate polymers.

Improving Climate Models to Account for Plant Behavior Yields ‘Goodish’ News

Climate scientists have not been properly accounting for what plants do at night, and that, it turns out, is a mistake. A new study from Lawrence Berkeley National Laboratory has found that plant nutrient uptake in the absence of photosynthesis affects greenhouse gas emissions to the atmosphere.