News Center

Berkeley Lab Celebrates the Integrative Genomics Building

Marking a step forward in Berkeley Lab’s vision to expand the footprint of the biological and environmental sciences, the Integrative Genomics Building (IGB) was dedicated during a two-hour ceremony that culminated in the cutting of a double helix ribbon representing DNA. By uniting leading experts and world-class technologies under one roof, the IGB will help transform plant and microbial genomics research into solutions for today’s most pressing environmental and energy issues.

Mineral Discovery Made Easier: X-Ray Technique Shines a New Light on Tiny, Rare Crystals

Like a tiny needle in a sprawling hayfield, a single crystal grain measuring just tens of millionths of a meter – found in a borehole sample drilled in Central Siberia – had an unexpected chemical makeup. And a specialized X-ray technique in use at Berkeley Lab confirmed the sample’s uniqueness and paved the way for its formal recognition as a newly discovered mineral: ognitite.

Pulsed Electron Beams Shed Light on Plastics Production

Researchers at Berkeley Lab, in collaboration with Dow and Eindhoven University of Technology, have developed a pulsed electron beam technique that enables high-resolution imaging of magnesium chloride without damage. This approach could apply to a vast range of beam-sensitive materials, and help to create a path toward sustainable plastics.

What if Dark Matter is Lighter? Report Calls for Small Experiments to Broaden the Hunt

Theorized dark matter particles haven’t yet shown up where scientists had expected them. So Berkeley Lab researchers are now designing new and nimble experiments that can look for dark matter in previously unexplored ranges of particle mass and energy, and using previously untested methods.

Separation Anxiety No More: A Faster Technique to Purify Elements

Researchers at Lawrence Berkeley National Laboratory have developed a new chemical separation method that is vastly more efficient than conventional processes, opening the door to faster discovery of new elements, easier nuclear fuel reprocessing, and, most tantalizing, a better way to attain actinium-225, a promising therapeutic isotope for cancer treatment.

To Pump or Not to Pump: New Tool Will Help Water Managers Make Smarter Decisions

The overpumping of groundwater in California has led to near environmental catastrophe in some areas – land is sinking, seawater is intruding, and groundwater storage capacity has shrunk. But researchers at Lawrence Berkeley National Laboratory believe machine learning could be part of the solution to restoring groundwater to sustainable levels and quality.

Berkeley Lab-Built Electron Gun Fires Up for LCLS-II X-Ray Laser Project

A new electron gun, designed and built at Berkeley Lab to supply electrons for a next-gen X-ray laser, fired its first electrons today. The X-ray laser is part of the LCLS-II project, which is an upgrade of SLAC National Accelerator Laboratory’s Linac Coherent Light Source X-ray laser.

Cyclotron Road Announces Its Fifth Cohort of Entrepreneurial Fellows

Fourteen scientists and engineers will join the prestigious Cyclotron Road program for a two-year fellowship based at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley. With access to world-class scientists and research facilities, fellows will define optimal paths for turning their science into value for industry, national security, and society.

Berkeley Lab Project to Pinpoint Methane ‘Super Emitters’

Methane, a potent greenhouse gas that traps about 30 times more heat than carbon dioxide, is commonly released from rice fields, dairies, landfills, and oil and gas facilities – all of which are plentiful in California. Now Berkeley Lab has been awarded $6 million by the state to find “super emitters” of methane in an effort to quantify and potentially mitigate methane emissions.

Breakthrough Technique for Studying Gene Expression Takes Root in Plants

An open-source RNA analysis platform has been successfully used on plant cells for the first time – a breakthrough that could herald a new era of fundamental research and bolster efforts to engineer more efficient food and biofuel crop plants. The technology, called Drop-seq, is a method for measuring the RNA present in individual cells, allowing scientists to see what genes are being expressed and how this relates to the specific functions of different cell types.