News Center

Separate But Together: Ultrathin Membrane Both Isolates and Couples Living and Non-Living Catalysts

Bioelectrochemical systems combine the best of both worlds – microbial cells with inorganic materials – to make fuels and other energy-rich chemicals with unrivaled efficiency. Yet technical difficulties have kept them impractical anywhere but in a lab. Now researchers at Lawrence Berkeley National Laboratory have developed a novel nanoscale membrane that could address these issues and pave the way for commercial scale-up.

Faster, Cheaper, Better: A New Way to Synthesize DNA

In what could address a critical bottleneck in biology research, Berkeley Lab researchers announced they have pioneered a new way to synthesize DNA sequences through a creative use of enzymes that promises to be faster, cheaper, and more accurate.

New Machine Learning Approach Could Accelerate Bioengineering

New approach is faster than the current way to predict the behavior of pathways, and promises to speed up the development of biomolecules for many applications in addition to commercially viable biofuels, such as drugs that fight antibiotic-resistant infections and crops that withstand drought.

Living Large: Exploration of Diverse Bacteria Signals Big Advance for Gene Function Prediction

Scientists at Berkeley Lab, including researchers at the U.S. Department of Energy’s Joint Genome Institute, have developed a workflow that enables large-scale, genome-wide assays of gene importance across many conditions. Their work is by far the largest functional genomics study of bacteria ever published.

4 Berkeley Lab-affiliated Scientists Elected as National Academy of Sciences Members

Four scientists affiliated with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) are among the group of 84 new members elected to the National Academy of Sciences (NAS); three are also professors at UC Berkeley.

A Core−Shell Nanotube Array for Artificial Photosynthesis

The average global energy consumption of transportation fuels is currently several terawatts (1 terawatt = 1012 Joule per second). A major scientific gap for developing a solar fuels technology that could replace fossil resources with renewable ones is scalability at the unprecedented terawatts level. In fact, the only existing technology for making chemical compounds on the

Sewage Sludge Leads to Biofuels Breakthrough

Researchers at Joint BioEnergy Institute and Lawrence Berkeley National Laboratory have discovered a new enzyme that will enable microbial production of a renewable alternative to petroleum-based toluene, a widely used octane booster in gasoline that has a global market of 29 million tons per year.

Plants Really Do Feed Their Friends

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have discovered that as plants develop they craft their root microbiome, favoring microbes that consume very specific metabolites. Their study could help scientists identify ways to enhance the soil microbiome for improved carbon storage and plant productivity.

Beyond the WIMP: Unique Crystals Could Expand the Search for Dark Matter

A new particle detector design proposed at the U.S. Department of Energy’s Berkeley Lab could greatly broaden the search for dark matter – which makes up 85 percent of the total mass of the universe yet we don’t know what it’s made of – into an unexplored realm.

Digging Deep: Harnessing the Power of Soil Microbes for More Sustainable Farming

How will the farms of the future feed a projected 9.8 billion people by 2050? Berkeley Lab’s “smart farm” project marries microbiology and machine learning in an effort to reduce the need for chemical fertilizers and enhance soil carbon uptake, thus improving the long-term viability of the land while increasing crop yields.