News Center

Berkeley Lab Technology Provides Clarity Amid Hawaiian Water Contamination Concerns

For years, routine testing has shown that watersheds of the Mahaulepu Valley and Waikomo Stream in southeast Kauai frequently contain high counts of potentially pathogenic fecal indicator bacteria (FIB). To better understand the cause of the high FIB counts, the DOH commissioned a study by Berkeley Lab microbial ecologists Gary Andersen and Eric Dubinsky. After using a powerful microbial detection tool called the PhyloChip, the scientists concluded that most of the past monitoring results were false positives.

Understanding Microbiomes for Advanced Wastewater Treatment and Reuse Systems

Wastewater is treated by an activated sludge process in municipal wastewater treatment plants and returned to the environment for use. This treatment process has been used for over a century, and today represents the largest application of biotechnology in the world, yet there has been no effort to map the global activated sludge microbiome. A

Plants Really Do Feed Their Friends

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have discovered that as plants develop they craft their root microbiome, favoring microbes that consume very specific metabolites. Their study could help scientists identify ways to enhance the soil microbiome for improved carbon storage and plant productivity.

Digging Deep: Harnessing the Power of Soil Microbes for More Sustainable Farming

How will the farms of the future feed a projected 9.8 billion people by 2050? Berkeley Lab’s “smart farm” project marries microbiology and machine learning in an effort to reduce the need for chemical fertilizers and enhance soil carbon uptake, thus improving the long-term viability of the land while increasing crop yields.

To Find New Biofuel Enzymes, It Can Take a Microbial Village

In search of new plant enzymes? Try looking in compost. Researchers at JBEI have demonstrated the importance of microbial communities as a source of stable enzymes that could be used to convert plants to biofuels. This approach yields robust enzymes that researchers can’t easily obtain from isolates.

Berkeley Lab Researchers Help Map the Microbiome of Everything

In the Earth Microbiome Project, an extensive global team collected more than 27,000 samples from numerous, diverse environments around the globe. They analyzed the unique collections of microbes – the microbiomes – living in each sample to generate the first reference database of bacteria colonizing the planet. Thanks to newly standardized protocols, original analytical methods and open data-sharing, the project will continue to grow and improve as new data are added. The paper describing this effort, published November

What’s On Your Skin? Archaea, That’s What

It turns out your skin is crawling with single-celled microorganisms – and they’re not just bacteria. A study by Lawrence Berkeley National Laboratory and the Medical University of Graz has found that the skin microbiome also contains archaea, a type of extreme-loving microbe, and that the amount of it varies with age.

Genes, Early Environment Sculpt the Gut Microbiome

Scientists from Berkeley Lab and PNNL have found that genes and early environment play big roles in shaping the gut microbiome. The microbes retained a clear “signature” formed where the mice were first raised, and the characteristics carried over to the next generation. The findings could potentially be used to develop designer diets optimized to an individual’s microbiome.

New Bacteria Groups, and Stunning Diversity, Discovered Underground

One of the most detailed genomic studies of any ecosystem to date has revealed an underground world of stunning microbial diversity, and added dozens of new branches to the tree of life.

Berkeley Lab Participates in New National Microbiome Initiative

The initiative will advance the understanding of microbiome behavior and enable the protection of healthy microbiomes, which are communities of microorganisms that live on and in people, plants, soil, oceans, and the atmosphere. Microbiomes maintain the healthy function of diverse ecosystems, and they influence human health, climate change, and food security.