News Center

Massive New Dark Matter Detector Gets Its ‘Eyes’

The LUX-ZEPLIN dark matter detector, which will soon begin its deep-underground search for particles thought to account for most matter in the universe, now has “eyes.”

Topping Off a Telescope with New Tools to Explore Dark Energy

Key components for the sky-mapping Dark Energy Spectroscopic Instrument, weighing about 12 tons, were hoisted atop the Mayall Telescope at Kitt Peak National Observatory near Tucson, Arizona, and bolted into place last week, marking a major project milestone.

FIONA Measures the Mass Number of 2 Superheavy Elements: Moscovium and Nihonium

A team led by nuclear physicists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first direct measurements of the mass numbers for the nuclei of two superheavy elements: moscovium, which is element 115, and nihonium, element 113. They obtained the results using FIONA, a new tool at Berkeley Lab that is designed to resolve the nuclear and atomic properties of the heaviest elements.

A Next Step for GRETA: A Better Gamma-Ray Detector

A new high-resolution gamma-ray detector system – designed to reveal new details about the structure and inner workings of atomic nuclei, and to elevate our understanding of matter and the stellar creation of elements – has passed an important project milestone.

Award Finalists Demonstrate Improved Nuclear Physics Code for Supercomputing

André Walker-Loud, a staff scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), is co-leader of a team that is among the six finalists for the Association of Computing Machinery’s Gordon Bell Prize that will be awarded this month.

Berkeley Lab Joins Other Labs and Universities in LaserNetUS, A New Nationwide High-Intensity Laser Network

To help foster the broad applicability of high-intensity lasers, Berkeley Lab is a partner in a new research network called LaserNetUS. The network will provide U.S. scientists increased access to the unique high-intensity laser facilities at the Lab’s BELLA Center and at eight other institutions.

Acrylic Tanks Provide Clear Window Into Dark Matter Detection

Scientists have a new window into the search for dark matter – an acrylic vessel that features a grouping of 12-foot-tall transparent tanks with 1-inch-thick walls. The tanks, which will surround a central detector for a nearly mile-deep experiment under construction in South Dakota called LUX-ZEPLIN (LZ), will be filled with liquid that produces tiny flashes of light in some particle interactions.

Toward a New Light: Advanced Light Source Upgrade Project Moves Forward

The Advanced Light Source (ALS), a scientific user facility at Berkeley Lab, has received federal approval to proceed with preliminary design, planning and R&D work for a major upgrade project that will boost the brightness of its X-ray beams at least a hundredfold. The upgrade will give the ALS, which this year celebrates its 25th anniversary, brighter beams with a more ordered structure – like evenly spaced ripples in a pond – that will better reveal nanoscale details in complex chemical reactions and in new materials, expanding the envelope for scientific exploration.

A Quantum Leap Toward Expanding the Search for Dark Matter

Through a new research program supported by the U.S. Department of Energy’s Office of High Energy Physics, a consortium of researchers from Berkeley Lab, UC Berkeley, and the University of Massachusetts Amherst will develop sensors that enlist the seemingly weird properties of quantum physics to probe for dark matter particles in new ways, with increased sensitivity, and in uncharted regions.

Berkeley Lab to Push Quantum Information Frontiers With New Programs in Computing, Physics, Materials, and Chemistry

Lawrence Berkeley National Laboratory (Berkeley Lab) this week announced support from the Department of Energy that significantly expands Berkeley Lab’s research efforts in quantum information science, an area of research that harnesses the phenomenon of quantum coherence, in which two or more particles are so tightly entangled that a change to one simultaneously affects the other. Quantum information science seeks to utilize this phenomenon to hold, transmit, and process information.