News Center

Sea Quark Surprise Reveals Deeper Complexity in Proton Spin Puzzle

New data from the STAR experiment at the Relativistic Heavy Ion Collider (RHIC) add detail – and complexity – to an intriguing puzzle that scientists have been seeking to solve: how the building blocks that make up a proton contribute to its spin.

When Semiconductors Stick Together, Materials Go Quantum

A simple method developed by a Berkeley Lab-led team could turn ordinary semiconducting materials into quantum machines – superthin devices with extraordinary electronic behavior. Such an advancement could help to revolutionize a number of industries aiming for energy-efficient electronic systems – and provide a platform for exotic new physics.

Laser ‘Drill’ Sets a New World Record in Laser-Driven Electron Acceleration

Combining a first laser pulse to heat up and “drill” through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab’s BELLA Center.

Preparing for a New Tool to Study the ‘Glue That Binds Us All’

For several decades, the nuclear science community has been calling for a new type of particle collider to pursue – in the words of one report – “a new experimental quest to study the glue that binds us all.” This glue is responsible for most of the visible universe’s matter and mass. To learn about this glue, scientists are proposing a unique, high-energy collider that smashes accelerated electrons, which carry a negative charge, into charged atomic nuclei or protons, which carry a positive charge.

New Measurements of Exotic Form of Magnesium Suggest a Surprising Shape-Shift

A team led by Berkeley Lab scientists has gleaned new and surprising clues about the nuclear structure of an exotic form of magnesium – Mg-40.

16 Elements: Berkeley Lab’s Contributions to the Periodic Table

Lawrence Berkeley National Laboratory is credited with discovering more elements on the periodic table than any other institution. In celebration of its 150th anniversary, we look at how far it’s come and where it’s headed.

Berkeley Lab Researcher Wins Machine-Learning Competition With Code That Sorts Through Simulated Telescope Data

To help solve a big data program for a new telescope that will conduct a major sky survey of the from the high desert of Chile, a scientific collaboration launched a competition to find the best way to train computers to identify the many types of objects it will be imaging.

How to Escape a Black Hole: Simulations Provide New Clues to What’s Driving Powerful Plasma Jets

New simulations led by researchers working at the Berkeley Lab and UC Berkeley combine decades-old theories to provide new insight about the driving mechanisms in plasma jets that allow them to steal energy from black holes’ powerful gravitational fields and propel it far from their gaping mouths.

Revealing Hidden Spin: Unlocking New Paths Toward High-Temperature Superconductors

Berkeley Lab researchers have discovered that electron spin is key to understanding how cuprate superconductors can conduct electricity without loss at high temperature.

Massive New Dark Matter Detector Gets Its ‘Eyes’

The LUX-ZEPLIN dark matter detector, which will soon begin its deep-underground search for particles thought to account for most matter in the universe, now has “eyes.”