News Center

High-Resolution Imaging Reveals New Understanding of Battery Cathode Particles

Using advanced imaging techniques, scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to observe what exactly happens inside a cathode particle as lithium-ion batteries are charged and discharged. In a research project led by Berkeley Lab materials chemist Guoying Chen, the researchers uncovered important insights into reactions in

New X-Ray Microscopy Technique Images Nanoscale Workings of Rechargeable Batteries

A new X-ray microscopy technique has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them.

Massive Trove of Battery and Molecule Data Released to Public

The Materials Project, a Google-like database of material properties aimed at accelerating innovation, has released an enormous trove of data to the public, giving scientists working on fuel cells, photovoltaics, thermoelectrics, and a host of other advanced materials a powerful tool to explore new research avenues. But it has become a particularly important resource for researchers working on batteries.

New Path Forward for Next-Generation Lithium-Ion Batteries

A team led by Gerbrand Ceder has made a major advance in understanding the chemical processes in “lithium-rich cathodes,” which hold promise for a higher energy lithium-ion battery.

Technique Matters: A Different Way to Make a Cathode May Mean Better Batteries

Lithium nickel manganese cobalt oxide, or NMC, is one of the most promising chemistries for better lithium batteries, especially for electric vehicle applications, but scientists have been struggling to get higher capacity out of them. Now researchers at Lawrence Berkeley National Laboratory have found that using a different method to make the material can offer substantial improvements.

New Hybrid Electrolyte For Solid-State Lithium Batteries

Scientists at Lawrence Berkeley National Laboratory have developed a novel electrolyte for use in solid-state lithium batteries that overcomes many of the problems that plague other solid electrolytes while also showing signs of being compatible with next-generation cathodes.

Berkeley Lab Hosts Bay Area Battery Summit

More than 200 people attended the 2015 Bay Area Battery Summit at Lawrence Berkeley National Laboratory on Nov. 3 to discuss how to promote transformative energy storage technologies. The purpose of the Summit was to bring scientists together with policymakers and business to discuss what more could be done—whether in labs, universities, industry, Congress, or

Battery Mystery Solved: Atomic-Resolution Microscopy Answers Longstanding Questions About Lithium-Rich Cathode Material

Using complementary microscopy and spectroscopy techniques, researchers at Lawrence Berkeley National Laboratory say they have solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered.

PIMs May Be the Cup of Choice for Lithium-Sulfur Batteries

Berkeley Lab researchers have developed a membrane made from polymers of intrinsic microporosity (PIMs) that extends the life and improves the performance of lithium-sulfur batteries.

Bay Area National Laboratories Jointly Launch New Small Business Voucher Pilot for Emerging Cleantech Companies

Lawrence Berkeley National Laboratory, in partnership with Sandia National Laboratories/California and Lawrence Livermore National Laboratory, has been awarded $4.15 million by the Department of Energy to jointly launch a new small business voucher pilot.