News Center

7 Imaging Tools Pushing Science Forward

Berkeley Lab scientists are developing new ways to see the unseen. Here are seven imaging advances (recently reported in our News Center) that are helping to push science forward, from developing better batteries to peering inside cells to exploring the nature of the universe.   1. Seeing DNA nanostructures in 3-D DNA segments can serve as a

Genes, Early Environment Sculpt the Gut Microbiome

Scientists from Berkeley Lab and PNNL have found that genes and early environment play big roles in shaping the gut microbiome. The microbes retained a clear “signature” formed where the mice were first raised, and the characteristics carried over to the next generation. The findings could potentially be used to develop designer diets optimized to an individual’s microbiome.

X-Rays Capture Unprecedented Images of Photosynthesis in Action

An international team of scientists is providing new insight into the process by which plants use light to split water and create oxygen. In experiments led by Berkeley Lab scientists, ultrafast X-ray lasers were able to capture atomic-scale images of a protein complex found in plants, algae, and cyanobacteria at room temperature.

Crop Yield Gets Boost with Modified Genes in Photosynthesis

Berkeley and Illinois researchers have bumped up crop productivity by as much as 20 percent by increasing the expression of genes that result in more efficient use of light in photosynthesis. Their work could potentially be used to help address the world’s future food needs.

3-D Imaging Technique Maps Migration of DNA-carrying Material at the Center of Cells

Scientists have produced detailed 3-D visualizations that show an unexpected connectivity in the genetic material at the center of cells, providing a new understanding of a cell’s evolving architecture.

Solar Cells Get Boost with Integration of Water-Splitting Catalyst onto Semiconductor

Berkeley Lab scientists have found a way to engineer the atomic-scale chemical properties of a water-splitting catalyst for integration with a solar cell, and the result is a big boost to the stability and efficiency of artificial photosynthesis. The research comes out of the Joint Center for Artificial Photosynthesis (JCAP), established to develop a cost-effective method of turning sunlight, water, and carbon dioxide into fuel.

Berkeley Lab Takes Home Five R&D 100 Awards for Environmental, Battery, and X-ray Technologies

Berkeley Lab-developed tech enabling energy-saving roofs, long-lived batteries, better data from X-ray experiments, safer drinking water, and reduced carbon dioxide in the atmosphere have received 2016 R&D 100 awards.

Gatekeeping Proteins to Aberrant RNA: You Shall Not Pass

Berkeley Lab researchers found that aberrant strands of genetic code have telltale signs that enable gateway proteins to recognize and block them from exiting the nucleus. Their findings shed light on a complex system of cell regulation that acts as a form of quality control for the transport of genetic information. A more complete picture of how genetic information gets expressed in cells is important in disease research.

Navigating an Ocean of Biological Data in the Modern Era

Scientists and software engineers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have developed a new -omics visualization tool, Arrowland, which combines different realms of functional genomics data in a single intuitive interface. The aim of this system is to provide scientists an easier way to navigate the ever-growing amounts of biological

For Normal Heart Function, Look Beyond the Genes

Berkeley Lab researchers have compiled a comprehensive genome-wide map of more than 80,000 enhancers considered relevant to human heart development and function. They went on to test two of the enhancers in mice, showing that when the enhancers were missing, the heart worked abnormally.